Наша математическая вселенная. В поисках фундаментальной природы реальности. Макс Тегмарк
ноября 1996 года. В Принстонском институте перспективных исследований в штате Нью-Джерси тихо и темно. Я провожу еще одну ночь в кабинете. Меня волнует возможность замены метода шестого порядка Эндрю Гамильтона методом третьего порядка, позволяющим оптимально определить спектр мощности COBE менее чем за час, и я хочу закончить статью к завтрашней конференции. Профессиональные физики загружают свои только что написанные статьи на общедоступный сайт http://arXiv.org, чтобы коллеги могли прочесть их прежде, чем тексты надолго увязнут в процессе журнального рецензирования и публикации. Однако у меня была манера загружать статьи до завершения работы над ними – сразу после наступления суточного дедлайна для подачи таких препринтов. Таким образом, я оказывался первым в списке статей следующего дня. Недостаток в том, что если не успеть закончить статью за 24 часа, то я опозорюсь на весь мир, опубликовав сырой черновик, который станет вечным памятником моей глупости. На этот раз моя стратегия дала сбой, и ранние пташки в Европе наткнулись на недоделанный раздел обсуждения в моей статье, который я закончил лишь около четырех утра. На конференции мой друг Ллойд Нокс представил похожий метод, который он разработал совместно с Эндрю Яффе и Диком Бондом в Торонто, но еще не подготовил для публикации. Когда я рассказывал о своих результатах, Ллойд, ухмыльнувшись, сказал Дику: «Тегмарк – быстрые пальчики!» Наш метод оказался чрезвычайно полезным и с тех пор применяется практически во всех измерениях спектра мощности микроволнового фона. Мы с Ллойдом, похоже, шли по жизни параллельными курсами: нам одновременно приходили в голову одинаковые идеи (впрочем, он обогнал меня с выводом замечательной формулы для шума на картах микроволнового фона), в одно и то же время у нас родилось двое сыновей, и даже развелись мы синхронно.
Золото в холмах
По мере совершенствования экспериментов, компьютеров и методов результаты измерения кривой спектра мощности (рис. 4.2) становились все точнее. Как видно на рисунке, предсказываемая форма кривой отчасти напоминает холмы Калифорнии. Если обмерить много немецких догов, пуделей и чау-чау и нарисовать их распределение по размеру, получится кривая с тремя пиками. А если измерить множество пятен космического микроволнового фона (рис. 3.4) и нарисовать их распределение по размерам, окажется, что пятна определенного размера встречаются особенно часто. Наиболее заметный пик на рис. 4.2 соответствует пятнам с угловым размером около 1°. Почему? Эти пятна были порождены звуковыми волнами, распространявшимися по космический плазме почти со скоростью света, а поскольку плазма просуществовала 400 тыс. лет после Большого взрыва, эти пятна выросли в размерах примерно до 400 тыс. световых лет. Если посчитать, под каким углом на нашем небосводе 14 млрд лет спустя видно сгущение размером 400 тыс. световых лет, получится около 1°. Если, конечно, пространство не искривлено…
Существует не один вид однородного трехмерного пространства (гл. 2): кроме плоской разновидности, которую аксиоматизировал