Магия математики: Как найти x и зачем это нужно. Артур Бенджамин
примере с 9: в этом случае дополняющим числом будет 1, а ближайшим круглым – 10 (как и для всех однозначных чисел). Для двузначных чисел это будет 100. Посмотрите на пары чисел, которые мы складываем, чтобы получить 100. Что вы видите?
Дополняющее число для 87 – 13, для 75 – 25 и так далее. И наоборот: дополняющее число для 13 – 87, а для 25 – 75. Решая каждую такую задачу слева направо, вы легко заметите, что во всех примерах (кроме последнего) сумма крайних левых чисел будет равна 9, а крайних правых – 10. Закономерность нарушается только тогда, когда числа заканчиваются на 0 (как в последнем примере): дополняющим числом для 80 будет 20.
Применим эту стратегию к вычислению 1234 – 567. Даже вычитание на бумаге в этом случае – не самое простое занятие, что уж говорить про подсчет в уме. Но с дополняющими числами этот зубодробительный пример вычитания превращается в простейший пример сложения! Вместо того чтобы вычитать 567, вычтем 600. Это гораздо проще, особенно если считать слева направо: 1234 – 600 = 634. Но ведь это не тот ответ, который нам нужен? Насколько не тот? Ровно на разность между 567 и 600 – такую же, как и между 67 и 100, то есть на 33. Значит,
Правда, очень просто? Потому что при сложении ничего не нужно держать «в уме». И так просто дело будет обстоять почти всегда, когда вы используете дополняющие числа при вычитании, пусть и трехзначные:
В большинстве случаев (когда числа не заканчиваются на 0) сумма «основной» и «дополнительной» цифр равна 9, за исключением последней пары, равной 10. Например, для 789: 7 + 2 = 9; 8 + 1 = 9; 9 + 1 = 10. Следовательно, дополнительное число, считая слева направо, вычисляется так: 9 – 7 = 2, 9 – 8 = 1, 10 – 9 = 1. Метод дополнительных чисел пригодится при подсчете сдачи. Мои любимые бутерброды в соседнем магазине, например, стоят $6,76. Как узнать, сколько я получу, если расплачусь банкнотой в $10? Да как раз с помощью дополняющего до 1000 числа для 676 – 324. Значит, сдача будет $3,24.
Каждый раз, покупая бутерброд, я волей-неволей замечаю, что и его цена, и возвращаемая мне сдача представляют собой квадраты чисел (26² = 676, а 18² = 324). Вопрос на засыпку: есть еще одна пара квадратов чисел, которые дают в сумме 1000. Сможете их найти?
Умножение в уме
Вы не поверите, но для того, чтобы легко умножать в уме, хотя бы примерно, достаточно выучить обычную таблицу умножения. А потом – набить руку (не беспокойтесь, учить больше ничего не придется) в решении примеров, в которых однозначное число умножается на двузначное. И снова: главный трюк – считать слева направо. Умножая, например, 8 на 24, умножьте сначала 8 × 20, а потом – 8 × 4:
Хорошо потренировавшись, переходите к перемножению одно- и трехзначных чисел. Это немного сложнее – просто потому, что чуть больше нужно держать в уме. Трюк в том, чтобы последовательно складывать промежуточные результаты и тем самым своевременно освобождать свою «оперативную» память. Например, при умножении 456 × 7 вашим предпоследним действием должно быть сложение 2800 + 350, а последним – прибавление 42.
Следующий шаг по пути мастера – операции с двузначными числами. Как по мне, так здесь-то и начинается самое веселье, хотя