Как не ошибаться. Сила математического мышления. Джордан Элленберг

Как не ошибаться. Сила математического мышления - Джордан Элленберг


Скачать книгу
более мелкий сегмент.

      Продолжайте это до тех пор, пока, приближаясь все больше и больше, вы не увидите нечто напоминающее прямую линию. Ползущему по кругу муравью, видящему лишь пространство, непосредственно его окружающее, представляется, будто он ползет по прямой. Точно так же человеку, стоящему на поверхности Земли, кажется, что он стоит на плоскости (если только он не окажется настолько проницательным, что обратит внимание, как на горизонте поднимаются приближающиеся издалека объекты).

      Суть математического анализа, изложенного на одной странице

      Теперь я хочу объяснить вам суть математического анализа. Готовы? Вот идея, за которую мы должны благодарить Исаака Ньютона: в идеальном круге нет ничего особенного. Каждая гладкая кривая при достаточном увеличении масштаба напоминает прямую линию[40]. Не имеет значения, насколько изогнута или закручена эта кривая, – главное, что у нее нет острых углов.

      Когда вы запускаете ракету, траектория ее перемещения выглядит так.

      Ракета сначала движется вверх, а затем вниз, образуя параболическую дугу. Сила тяжести изгибает любую траекторию движения по направлению к поверхности Земли; это один из самых фундаментальных законов нашей физической жизни. Но, если мы увеличим масштаб и рассмотрим очень короткий отрезок этой кривой, она будет выглядеть так.

      Затем так.

      Как и в случае окружности, траектория движения ракеты кажется прямой линией, направленной вверх под определенным углом. Безусловно, эта линия отклоняется под действием силы тяжести, но подобное отклонение слишком незначительно, чтобы увидеть его невооруженным глазом. Приближение к еще более мелкому участку кривой делает линию еще больше похожей на прямую. Чем больше приближение, тем ровнее участок кривой.

      А теперь сделаем концептуальный скачок. Ньютон сказал: послушайте, давайте пойдем до конца. Уменьшайте поле зрения до тех пор, пока оно не станет бесконечно малой величиной – настолько малой, что она будет меньше любого размера, который вы можете назвать, но все же не равной нулю. Вы изучаете траекторию движения ракеты не на протяжении очень короткого периода, а в один момент времени. В таком случае то, что было почти прямой линией, становится в точности прямой. Наклон этой кривой Ньютон называл флюксией, а мы называем производной.

      Именно этот скачок не был готов совершить Архимед. Он понимал, что многоугольники с более короткими сторонами все более и более приближаются к окружности, но он никогда не говорил о том, что в действительности окружность представляет собой многоугольник с бесконечно большим количеством бесконечно малых сторон.

      Некоторые современники Ньютона также не разделяли его точку зрения. Наиболее активно возражал Ньютону Джордж Беркли, который критиковал концепцию бесконечно малых величин Ньютона в крайне издевательском тоне{23}, как, к сожалению, сейчас уже не пишут в математической


Скачать книгу

<p>40</p>

Математический объект, который в каждой точке локально выглядит как обычное евклидово пространство, называется многообразием. Пример одномерного многообразия – окружность или любая другая кривая без углов и концов, например парабола. Примеры двумерных многообразий: сфера – поверхность шара; тор – поверхность баранки; крендель – поверхность кренделя; бутылка Клейна – в нашем обычном трехмерном пространстве невозможно представить эту поверхность, бутылка Клейна получается, если вытянуть горлышко обычной бутылки и соединить ее с донышком, предварительно проделав в нем дырку нужного размера и потом сгладив место соединения; фокус состоит в том, что вставить надо с внутренней стороны, иначе получится обычный тор, и при этом без пересечения стенки бутылки. Некоторые свойства многообразий описывает, в частности, уже упоминавшаяся гипотеза Пуанкаре. Прим. М. Г.

<p>23</p>

George Berkeley. The Analyst: A Discourse Addressed to an Infidel Mathematician (1734) / Ed. David R. Wilkins, (www.maths.tcd.ie/pub/HistMath/People/Berkeley/Analyst/Analyst.pdf – просмотрено 13.01.2014).