Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II. А. А. Астахов
вращения на этом же радиусе, а при движении к центру вращения увеличивается. В результате сила Кориолиса при радиальном движении от центра вращения уменьшается по сравнению с теоретическим значением, рассчитанном исходя из теоретического соотношения угловых скоростей, а при движении к центру вращения увеличивается.
Необходимый до теоретического значения дополнительный поворот линейной скорости спирали в ту или иную сторону осуществляется только после прекращения радиального движения за счёт дополнительных затрат внешней радиальной силы. При этом линейная скорость спирали становится линейной скоростью установившегося вращательного движения. Причём при радиальном движении от центра вращения линейная скорость установившегося вращательного движения скачкообразно увеличивается, что приводит к увеличению угловой скорости, а при движении к центру вращения уменьшается, что приводит к уменьшению угловой скорости.
Наш вывод формул составляющих силы Кориолиса производился по теоретическому соотношению угловых скоростей в зависимости от обратного соотношения квадратов радиусов (второй закон Кеплера). Поэтому мы получили, неточную кратность двум во всех формулах составляющих напряжения Кориолиса, кроме динамической силы Кориолиса. При расчёте динамической силы Кориолиса неточное теоретическое соотношение (V1 * r1 = V2 * r2) не применяется, т.к. в расчёте участвует только одно заданное значение угловой скорости, что и обеспечивает точную кратность.
Как показано в главе 3.5 несоответствие теоретического соотношения угловых скоростей с этим же соотношением в процессе поворотного движения связано с дополнительными затратами с тем или иным знаком на образование установившегося вращения. С увеличением радиуса это несоответствие уменьшается (см. Рис. 4.2.1), т.к. на больших радиусах уменьшается отклонение линейной скорости спирали от линейной скорости переносного вращения и соответственно уменьшается необходимый дополнительный поворот скорости спирали при образовании установившегося вращения. Поэтому с увеличением радиуса и соответственно потерь на преобразование движения по направлению при установлении равномерного вращения сила Кориолиса, рассчитанная исходя из теоретического соотношения угловых скоростей в зависимости от обратного соотношения квадратов радиусов всё меньше отличается от теоретического значения (см. Рис. 4.2.1).
***
Ошибки Фейнмана при выводе силы Кориолиса.
В представленном выводе динамической силы Кориолиса через меру пространства вращательного движения – мерный радиан (rо) устранены три ошибки классической физики: нарушение закона сохранения истины, дифференцирование уравнения по постоянному коэффициенту радиусу и неэквивалентная замена переменных. Это и есть причины появления «двойки» в классической силе и ускорении Кориолиса, не обоснованных ни физически, ни математически.
Из школьного курса математики известно,