Организация и математическое планирование эксперимента. Учебное пособие. Виталий Александрович Скляр

Организация и математическое планирование эксперимента. Учебное пособие - Виталий Александрович Скляр


Скачать книгу
и принимать форму колокола (рисунок 2.4.).

      Рисунок 2.4 – Нормальное распределение

      Из рисунка 2.4 также следует, что нормально распределенная случайная величина попадает с вероятностью 0,997 в интервал от 3σ до +3σ это правило носит названия правила трех сигм.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQIALwAvAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQDBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBD/wAARCAFHAk8DAREAAhEBAxEB/8QAHQABAAEFAQEBAAAAAAAAAAAAAAQBAwUGBwIICf/EAFsQAAEDAwEDBQgJDwoFBAIDAAEAAgMEBREGBxIhEzFRldMUFxgiQVZXlAgZNVVhcbK00hUWIzI2QlRyc3R1gZGhszM0N1Jik7HR1OMJJIKSoiU4o8FT4UOkw//EAB0BAQABBQEBAQAAAAAAAAAAAAADAQIEBQYHCQj/xABREQABAgMDAw8GDAUDBAMBAQABAAIDBBEFEiEGMUETFRYiMlFSU2FxgZGSodEzVJOx0uEHFBcYNFVicqKywdMjNUJz8IKz4jZDdPEIJIPCJf/aAAwDAQACEQMRAD8A/VNEREREREREREREREREREREREREREREREREREREREWK1RqW0aP0/Xamv1TyFBb4TNM/GTjmDWjyuJIAHlJAUsGC+YiCFDFScyjjRmQIZiRDQBfLl69l9ryqrpH6e07ZbfQ5PJx1rZKicjyF5Y9jQfgAIHSV2sDJKFcGrRDXkpRcbGyqiXzqLBTlzqB4Wm1f8F016hN2yn2JSnDd3eCh2UzXAb3+KeFptX/BdNeoTdsmxKU4bu7wTZTNcBvf4p4Wm1f8F016hN2ybEpThu7vBNlM1wG9/inhabV/wXTXqE3bJsSlOG7u8E2UzXAb3+KeFptX/BdNeoTdsmxKU4bu7wTZTNcBvf4p4Wm1f8F016hN2ybEpThu7vBNlM1wG9/inhabV/wXTXqE3bJsSlOG7u8E2UzXAb3+KeFptX/BdNeoTdsmxKU4bu7wTZTNcBvf4p4Wm1f8F016hN2ybEpThu7vBNlM1wG9/inhabV/wXTXqE3bJsSlOG7u8E2UzXAb3+KeFptX/BdNeoTdsmxKU4bu7wTZTNcBvf4p4Wm1f8F016hN2ybEpThu7vBNlM1wG9/inhabV/wXTXqE3bJsSlOG7u8E2UzXAb3+KeFptX/BdNeoTdsmxKU4bu7wTZTNcBvf4p4Wm1f8F016hN2ybEpThu7vBNlM1wG9/inhabV/wXTXqE3bJsSlOG7u8E2UzXAb3+KeFptX/BdNeoTdsmxKU4bu7wTZTNcBvf4p4Wm1f8F016hN2ybEpThu7vBNlM1wG9/inhabV/wXTXqE3bJsSlOG7u8E2UzXAb3+KeFptX/BdNeoTdsmxKU4bu7wTZTNcBvf4p4Wm1f8F016hN2ybEpThu7vBNlM1wG9/inhabV/wXTXqE3bJsSlOG7u8E2UzXAb3+KeFptX/BdNeoTdsmxKU4bu7wTZTNcBvf4p4Wm1f8F016hN2ybEpThu7vBNlM1wG9/inhabV/wXTXqE3bJsSlOG7u8E2UzXAb3+KeFptX/BdNeoTdsmxKU4bu7wTZTNcBvf4p4Wm1f8F016hN2ybEpThu7vBNlM1wG9/inhabV/wXTXqE3bJsSlOG7u8E2UzXAb3+KeFptX/BdNeoTdsmxKU4bu7wTZTNcBvf4p4Wm1f8F016hN2ybEpThu7vBNlM1wG9/inhabV/wXTXqE3bJsSlOG7u8E2UzXAb3+Kk272Xm0imq2SXSxaerqUEcpDDHNTSOHl3ZC94B+NpCji5IwC3+HEIPLSikh5VRg7+IwEclV9O6D1xZNommKTVNhe/uepDmvikAEkErTh8TwOZzTw6DwIyCCuKm5WJJxjBijELsJWZhzcIRoRwK2FY6yERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERFxL2XM0seyyniY8hs96o2SAH7Zo33AH/AKmtP6l0GTLQbQbXePqWhyjJEi6m+PWvj5elrzpERTbdZ666QXCpo42OjtlIa2pLnhu7EHtYSM85y9vAKKJGZCLQ7+o0HP8A4FLDhOi3rugEnmCvXzTtz022j+rDYIJK2nbUsh5djpY43AFvKMBzGXNIcA7BIOVbBmGTBcIeN00zYV00OmmY0V0aA+A1rn4XhXPjTRUaK6N9YvfZje3246d4YU9CoKhC5oxl7RnmyRxSiKuW53d4ZPMM8URMjpHRzoim09orKmz1t+iERo7fNBT1DzKAWvm3uTG7znO474sKJ0VrIjYRzurTopX1qVsJz2OiDM2lenAepQsjpHDjzqVRJkD74ftRFTeacgPacc/EcERVyBzkdPOiISBnJAxxPHmRFQOa4Za5rh8ByiVqq7zSd0OGRzjPFEVN5vPvN5s8/k6URC9gGS9oB5iXDilClQhcwAEvaAeY5HFEqqlzQcFzQfhOERCQM5IGOfjzIiZHHiOHPx5kRULmjGXtGebiOKURVyOPEcOfjzIipvsJ3RIzPNjeGUoUqEDmuzuvacc+DzIiB7DzSMOOfDglClQq5A5yiJkdI/aiISBzkD4yiJwzjIyERERERfU3sNZ5Xac1RTF5MUd2ie1vkBdTR5P690Lz3KxoE20/Z/UrvclyTKuH2v0C+iFyy6ZERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERcP9l5/RhRfpyk+TIuhyY/mA5itBlJ9BPOF8gr0pedoiLddmlyoLUzVFXcqGkroW2N/wDydTKWMqf+ZpzyeWkOOQDwHRzEZC1tpQ3xNSawkG+MRowditjZz2w3RC8Ai47A6c2HStxM1XZbrrDaXatQ0s8F0s/dVurJZKfuhs880WITAc4kYGSMIDcANB4AhaygiQoMjEYQWvoRtqEAGprvGoOetVsrxZGizzHChYSCaVBNAG03xSmalKLIW+5V12rxqGjvtF9Wn6atRlMb6CCpke50vLP
Скачать книгу