The Children's Book of Stars. Mitton Geraldine Edith
to be felt. When the stone first started the force you gave to it was enough to overcome the gravitation force, but as the stone moves more slowly the earth-pull asserts itself, and the stone drops down to the ground and lies still upon the surface. Now, if there were no friction, and therefore no resistance, there would be no reason why anything once set moving should not go on moving for ever. The force you give to any object you throw is enough to overcome gravitation; and it is only when the first force has been diminished by friction that the earth asserts its authority and pulls the moving object toward it. If it were possible to get outside the air and out of reach of the pull of the earth, we might fling a ball off into space, and it would go on in a straight line until something pulled it to itself by the force of gravity.
Gravitation affects everything connected with the earth; even our air is held to the earth by gravitation. It grows thinner and thinner as we get further away from the earth. At the top of a high mountain the air is so thin that men have difficulty in breathing, and at a certain height they could not breathe at all. As they cannot breathe in very fine air, it is impossible for them to tell by personal experiment exactly where the air ends; but they have tried to find out in other ways, and though different men have come to different conclusions on the subject, it is safe to say that at about two hundred miles above the earth there is nothing that could be called air. Thus we can now picture our spinning earth clothed in a garment of air that clings closely about her, and grows thinner and thinner until it melts away altogether, for there is no air in space.
Now in the beginning God made the world, and set it off by a first impulse. We know nothing about the details, though further on you shall hear what is generally supposed to have taken place; we only know that, at some remote age, this world, probably very different from what it is now, together with the other planets, was sent spinning off into space on its age-long journey. These planets were not sent off at random, but must have had some particular connection with each other and with the sun, for they all belong to one system or family, and act and react on each other. Now, if they had been at rest and not in movement, they would have fallen right into the sun, drawn by the force of gravitation; then they would have been burned up, and there would have been an end of them. But the first force had imparted to them the impulse to go on in a straight line, so when the sun pulled the result was a movement between the two: the planets did not continue to move in a straight line, neither did they fall on to the sun, but they went on a course between the two – that is, a circle – for the sun never let them get right away from him, but compelled them to move in circles round him. There is a very common instance of this kind of thing which we can see, or perhaps feel, every day. If you try to sit still on a bicycle you tumble off, because the earth pulls you down to itself; but if, by using the force of your own muscles, you give the bicycle a forward movement this resists the earth-pull, and the result is the bicycle runs along the ground. It does not get right away from the earth, not even two or three feet above ground; it is held to the earth, but still it goes forward and does not fall over, for the movement is made up of the earth-pull, which holds it to the ground, and the forward movement, which propels it along. Then again, as another instance, if you tie a ball to a string and whirl it round you, so long as you keep on whirling it will not fall to the ground, but the moment you stop down it drops, for there is nothing to fight against the pull of gravitation. Thus we can picture the earth and all the planets as if they were swinging round the sun, held by invisible strings. It is the combination of two forces that keeps them in their places – the first force and the sun's pull. It is very wonderful to think of. Here we are swinging in space on a ball that seems only large to us because we are so much smaller ourselves; there is nothing above or below it but space, yet it travels on day by day and year by year, held by invisible forces that the brain of man has discovered and measured.
Of course, every planet gives a pull at every other planet too, but these pulls are so small compared with that of the sun that we need not at present notice them. Then we come to another point. We said that every body pulled every other body in proportion to their weights and their distance. Now, gravity acts much more strongly when things are near together than when they are far away from each other; so that if a smaller body is near to another somewhat larger than itself, it is pulled by it much more strongly than by a very much larger one at a considerably greater distance. We have an instance of this in the case of the earth and moon: as the earth responds to the pull of the sun, so the moon responds to the pull of the earth. The moon is so comparatively near to the earth that the earth-pull forces her to keep on going round and round, instead of leaving her free to circle round the sun by herself; and yet if you think of it the moon does go round the sun too. Recall that game we had when the sun was in the middle, and the two smaller girls, representing the earth and moon, went round it. The moon-child turned round the earth-child, but all the while the earth-child was going round the sun, so that in a year's time the moon had been all round the sun too, only not in a straight line. The moon is something like a dog who keeps on dancing round and round you when you go for a walk. He does go for the walk too, but he does much more than that in the same time. Thus we have further completed our idea of our world. We see it now hanging in space, with no visible support, held in its place by two mighty forces; spinning on year after year, attended by its satellite the moon, while we run, and walk, and cry, and laugh, and play about on its surface – little atoms who, except for the brain that God has given them, would never even have known that they are continually moving on through endless space.
CHAPTER III
THE SHINING MOON
'Once upon a time,' long, long ago, the earth was not a compact, round, hard body such as she is now, but much larger and softer, and as she rotated a fragment broke off from her; it did not go right away from her, but still went on circling round with the motion it had inherited from her. As the ages passed on both the earth and this fragment, which had been very hot, cooled down, and in cooling became smaller, so that the distance between them was greater than it had been before they shrank. And there were other causes also that tended to thrust the two further from each other. Yet, compared with the other heavenly bodies, they are still near, and by looking up into the sky at night you can generally see this mighty fragment, which is a quarter the diameter of the earth – that is to say, a quarter the width of the earth measured from side to side through the middle. It is – as, of course, you have guessed – the moon. The moon is the nearest body to us in all space, and so vast is the distance that separates us from the stars that we speak as if she were not very far off, yet compared with the size of the earth the space lying between us and her is very great. If you went right round the world at the thickest part – that is to say, in the region of the Equator – and when you arrived at your starting-point went off once again, and so on until you had been round ten times, you would only then have travelled about as far as from the earth to the moon!
The earth is not the only planet which has a moon, or as it is called, a satellite, in attendance. Some of the larger planets have several, but there is not one to compare with our moon. Which would you prefer if you had the choice, three or four small moons, some of them not much larger than a very big bright star, or an interesting large body like our own moon? I know which I should say.
'You say that the moon broke off from the earth, so perhaps there may be some people living on her,' I hear someone exclaim.
If there is one thing we have found out certainly about the moon, it is that no life, as we know it, could exist there, for there is neither air nor water. Whether she ever had any air or water, and if so, why they disappeared, are questions we cannot answer. We only know that now she is a dead world. Bright and beautiful as she is, shedding on us a pale, pure light, in vivid contrast with the fiery yellow rays of the sun, yet she is dead and lifeless and still. We can examine her surface with the telescope, and see it all very plainly. Even with a large opera-glass those markings which, to the naked eye, seem to be like a queer distorted face are changed, and show up as the shadows of great mountains. We can only see one side of the moon, because as I have said, she keeps always the same face turned to the earth; but as she sways slightly in her orbit, we catch a glimpse of sometimes a little more on one side and sometimes a little more on the other, and so we can judge that the unseen part is very much the same as that turned toward us.
At first it is difficult to realize what it means to have no air. Besides supporting life in every breath that is drawn by living creatures, the air does