Aircraft and Submarines. Abbot Willis John

Aircraft and Submarines - Abbot Willis John


Скачать книгу
not to flap, but their angles to the wind were controlled by a system of levers controlled by Le Bris, who stood up in the basket in the centre. To rise he required something like the flying start which the airplanes of to-day get on their bicycle wheels before leaving the ground. As Le Bris had no motor this method of propulsion was denied him, so he loaded the apparatus in a cart, and fastened it to the rail by a rope knotted in a slip knot which a jerk from him would release. As they started men walked beside the cart holding the wings, which extended for twenty-five feet on either side. As the horses speeded up these assistants released their hold. Feeling the car try to rise under his feet Le Bris cast off the rope, tilted the front end of the machine, and to his joy began to rise steadily into the air. The spectators below cheered madly, but a note of alarm mingled with their cheers, and the untried aviator noticed a strange and inexplicable jerking of his machine. Peering down he discovered, to his amaze, a man kicking and crying aloud in deadly fear. It was evident that the rope he had detached from the cart had caught up the driver, who had thus become, to his intense dismay, a partner in the inventor's triumph. Indeed it is most possible that he contributed to that triumph for the ease and steadiness with which the machine rose to a height estimated at three hundred feet suggests that he may have furnished needed ballast – acted in fact as the tail to the kite. Humanity naturally impelled Le Bris to descend at once, which he did skilfully without injuring his involuntary passenger, and only slightly breaking one of the wings.

      Had Le Bris won this success twenty years later his fame and fortune would have been secure. But in 1854 the time was not ripe for aeronautics. Le Bris was poor. The public responded but grudgingly to his appeals for aid. His next experiment was less successful – perhaps for lack of the carter – and he ultimately disappeared from aviation to become an excellent soldier of France.

      Perhaps had they not met with early and violent deaths, the Lilienthals and Pilcher might have carried their experiments in the art of gliding into the broader domain of power flight. This however was left to the two Americans, Orville and Wilbur Wright, who have done more to advance the art of navigating the air than all the other experimenters whose names we have used. The story of the Wright brothers is one of boyhood interest gradually developed into the passion of a lifetime. It parallels to some degree the story of Santos-Dumont who insisting as a child that "man flies" finally made it a fact. The interest of the Wrights was first stimulated when, in 1878, their father brought home a small toy, called a "helicopter," which when tossed in the air rose up instead of falling. Every child had them at that time, but curiously this one was like the seed which fell upon fertile soil. The boys went mad, as boys will, on the subject of flying. But unlike most boys they nurtured and cultivated the passion and it stayed with them to manhood. From helicopters they passed to kites, and from kites to gliders. By calling they were makers and repairers of bicycles, but their spare time was for years devoted to solving the problem of flight. In time it became their sole occupation and by it they won a fortune and world-wide fame. Their story forms a remarkable testimony to the part of imagination, pertinacity, and courage in winning success. After years of tests with models, and with kites controlled from the ground, the brothers had worked out a type of glider which they believed, in a wind of from eighteen to twenty miles an hour, would lift and carry a man. But they had to find a testing ground. The fields near their home in Ohio were too level, and their firm unyielding surface was not attractive as a cushion on which to light in the event of disaster. Moreover the people round about were getting inquisitive about these grown men "fooling around" with kites and flying toys. To the last the Wrights were noted for their dislike of publicity, and it is entirely probable that the sneering criticisms of their "level headed" and "practical" neighbours had a good deal to do with rooting them in this distaste.

      Low steep hills down the sides of which they could run and at the proper moment throw themselves upon their glider; a sandy soil which would at least lessen the shock of a tumble; and a vicinage in which winds of eighteen miles an hour or more is the normal atmospheric state were the conditions they sought. These they found at a little hamlet called Kitty-Hawk on the coast of North Carolina. There for uncounted centuries the tossing Atlantic had been throwing up its snowy sand upon the shore, and the steady wind had caught it up, piled it in windrows, rolled it up into towering hills, or carried it over into the dunes which extended far inland. It was a lonely spot, and there secure from observation the Wrights pitched their camp. For them it was a midsummer's holiday. Not at first did they decide to make aviation not a sport but a profession. To their camp came visitors interested in the same study, among them Chanute, a well-known experimenter, and some of his associates. They had thought to give hours at a time to actual flight. When they closed their first season, they found that all their time spent in actual flight footed up less than an hour. Lilienthal, despite all he accomplished, estimated that he, up to a short time before his death, spent only about five hours actually in the air. In that early day of experimentation a glide covering one hundred feet, and consuming eight or ten seconds, was counted a triumph.

      But the season was by no means wasted. Indeed such was the estimate that the Wrights put upon it that they folded their tents determined that when they returned the year following it would be as professionals, not amateurs. They were confident of their ability to build machines that would fly, though up to that time they had never mounted a motor on their aircraft.

      In the clear hot air of a North Carolina midsummer the Wrights used to lie on their backs studying through glasses the methods of flight of the great buzzards – filthy scavenger birds which none the less soaring high aloft against a blue sky are pictures of dignity and grace.

      Bald eagles, ospreys, hawks, and buzzards give us daily exhibitions of their powers [wrote Wilbur Wright]. The buzzards were the most numerous, and were the most persistent soarers. They apparently never flapped except when it was absolutely necessary, while the eagles and hawks usually soared only when they were at leisure. Two methods of soaring were employed. When the weather was cold and damp and the wind strong the buzzards would be seen soaring back and forth along the hills or at the edge of a clump of trees. They were evidently taking advantage of the current of air flowing upward over these obstructions. On such days they were often utterly unable to soar, except in these special places. But on warm clear days when the wind was light they would be seen high in the air soaring in great circles. Usually, however, it seemed to be necessary to reach a height of several hundred feet by flapping before this style of soaring became possible. Frequently a great number of them would begin circling in one spot, rising together higher and higher till finally they would disperse, each gliding off in whatever direction it wished to go. At such times other buzzards only a short distance away found it necessary to flap frequently in order to maintain themselves. But when they reached a point beneath the circling flock they began to rise on motionless wings. This seemed to indicate that rising columns of air do not exist everywhere, but that the birds must find them. They evidently watch each other and when one finds a rising current the others quickly make their way to it. One day when scarce a breath of wind was stirring on the ground we noticed two bald eagles sailing in circling sweeps at a height of probably five hundred feet. After a time our attention was attracted to the flashing of some object considerably lower down. Examination with a field-glass proved it to be a feather which one of the birds had evidently cast. As it seemed apparent that it would come to earth only a short distance away, some of our party started to get it. But in a little while it was noted that the feather was no longer falling, but on the contrary was rising rapidly. It finally went out of sight upward. It apparently was drawn into the same current in which the eagles were soaring and was carried up like the birds.

      It was by such painstaking methods as these, coupled with the mathematical reduction of the fruits of such observations to terms of angles and supporting planes, that the Wrights gradually perfected their machine. The first airplane to which they fitted a motor and which actually flew has been widely exhibited in the United States, and is to find final repose in some public museum. Study it as you will you can find little resemblance in those rectangular rigid planes to the wings of a bird. But it was built according to deductions drawn from natural flight.

      The method of progress in these preliminary experiments was, by repeated tests, to determine what form of airplane, and of what proportions, would best support a man. It was evident that for free and continuous flight it must be able to carry not only the pilot, but an engine and a store of fuel as well. Having, as they thought, determined these conditions


Скачать книгу