Ритм Вселенной. Как из хаоса возникает порядок. Стивен Строгац

Ритм Вселенной. Как из хаоса возникает порядок - Стивен Строгац


Скачать книгу
бачок начнет снова наполняться; возникнет своего рода спонтанный осциллятор. (Чтобы довершить аналогию, нам также нужно предположить, что бачок слегка протекает. Вода вытекает через небольшую дырочку у дна бачка. Вода просачивается быстрее, когда уровень воды в бачке выше, из чего следует, что бачок наполняется все медленнее по мере повышения уровня воды в нем. Наличие этой утечки не имеет особого значения для самой осцилляции – это устройство будет циклически наполняться и опустошаться даже в отсутствие утечки, – но оно оказывается критически необходимым для синхронизации многих таких осцилляторов.) Наконец, представьте целое полчище из 10 тысяч таких осциллирующих туалетных бачков, соединенных между собой системой труб по принципу «каждый с каждым» таким образом, что когда происходит слив какого-либо из них, это приводит к одинаковому подъему уровня воды во всех остальных бачках. Если эта дополнительная вода поднимает уровень воды в каких-либо из этих бачков выше его порогового значения, то вода сливается и из этих бачков.

      В связи с этим возникает следующий вопрос: как поведет себя такое хитросплетение бачков? Будут ли эти бачки наполняться и сливаться хаотически, когда каждому из них заблагорассудится? Распадется ли их сообщество на отдельные группировки, конкурирующие между собой? Может быть, они будут наполняться и сливаться по очереди, друг за другом?

      Пескин предположил, что такая система всегда будет входить в синхронизм: какой бы ни была начальная ситуация в такой системе, в конечном счете все осцилляторы будут запускаться в унисон. Кроме того, он предположил, что синхронизм наступит, даже если эти осцилляторы будут не вполне идентичны. Но когда Пескин попытался доказать свои предположения, он столкнулся с определенными техническими препятствиями. В частности, отсутствовали надежные математические процедуры, которые позволяли бы описывать большие системы осцилляторов, обменивающихся между собой внезапными, дискретными импульсами. Поэтому он отказался от своего первоначального замысла и сосредоточился на простейшем возможном случае: двух идентичных осцилляторах. Однако даже в этом случае математические проблемы казались чересчур сложными. Пескин попытался еще больше упростить задачу, допустив возможность лишь бесконечно малых толчков и бесконечно малых утечек через резистор. После таких упрощений задача поддавалась решению: для этого специального случая Пескин доказал неизбежность синхронизма.

      Доказательство, предложенное им, базируется на идее, сформулированной французским математиком Анри Пуанкаре, основателем теории хаоса. Концепция Пуанкаре представляет собой математический эквивалент стробофотографии. Возьмем два идентичных осциллятора, A и B, и представим в графическом виде их работу, делая фотоснимок каждый раз, когда запускается осциллятор A. Как будет выглядеть соответствующая последовательность фотоснимков? Осциллятор A лишь запустился, поэтому он выглядит так, как будто все время


Скачать книгу