Time Telling through the Ages. Harry Brearley
and divided the day into ten hours. This played havoc with time-keeping, and caused great confusion. Watches and clocks were made with one circle of numbers for the new hours, and another, within, on which were shown the old hours which people could understand. But this complication lasted only a few years, for the traditional system was soon restored.
To return again to the era of the first calendar. While the wise men of Mesopotamia were engaged in mingling science and mystery, another civilization, the Egyptian, was developing upon the banks of the Nile and passing through much of the same stages. In due course the Persians conquered both Mesopotamia and Egypt and absorbed their knowledge. Still later the wonderful Greek nation combined astronomy with mathematics in a way which makes us wonder to this day. This is the way in which civilization has grown. Race after race, during century after century has added its new knowledge and discoveries to that which has been learned before. It is interesting to note that the astronomy of the Babylonians appears to have been paralleled independently by other ancient civilizations between which there was no apparent possibility of intercourse. The Chinese in the East and the Aztecs of Mexico, on the other side of the world, invented practically the same astronomical instruments as the Babylonians and made similar discoveries. All methods of indicating time have been steps upon the long road which has led to the making of modern timepieces.
The progressive Greeks did not permit knowledge to be monopolized by the priesthood and probably their common people knew more about the stars than most of the population of America do to this day. Sailors possessed no compasses, but they voyaged very skilfully with the guidance of the stars, while farmers, lacking our modern weather-reports and crop-bulletins, learned to govern their planting and harvesting by the positions of the heavenly bodies.
In one sense, this is time-telling and in another it is not, but our ideas of time and astronomy have always been so closely associated that it is hard to think of one apart from the other. This is because the movements of the earth, which produce night and day and the changes of the seasons, are our supreme court of time, our final standard for its measurement. And since we cannot see the earth move, we judge of its motion by the apparent movement of the heavenly bodies, just as we realize the movement of a train by watching the landscape rush past us as we go.
Some of the great Greek scientists, by the way, had even learned to foretell eclipses of the sun. According to Herodotus the one which occurred on May 28th, in the year 585 B. C., was predicted by Thales of Miletus, one of the famous "Seven Wise Men." This event was also celebrated because of another interesting association; it stopped a battle between the armies of the Medes and the Lydians. Perhaps we can guess at what happened. Undoubtedly the eclipse was interpreted by the armies as a sign of divine anger, for the ancients identified many of the forces and objects of nature as gods, and Phoebus Apollo, who it was believed daily drove his flaming chariot across the sky, was the great divinity of the sun. Furthermore, these gods were very apt to meddle with happenings upon the earth, particularly with wars, as anyone who has read the "Iliad" will recall.
Imagine, then, the two armies about to go to battle when suddenly something appeared to go wrong with the sun. There to their amazement, in a cloudless sky, a dimming shadow touched the edge of the sun's shining disk and began slowly to blot it out. The warriors forgot to fight each other and stared in terror at the sky. The sun dwindled to a crescent; a weird twilight fell upon the earth. Finally, the last thread of brightness disappeared leaving a dull circle in the sky, surrounded by faint bands of light. The gloom of night fell upon the ground. Birds and animals went to their rest.
No further evidence was needed by the superstitious and frightened soldiers. It must be true that Phoebus Apollo was grievously angered, and they forthwith laid down their arms. The sun god, of course, soon showed his approval of this action by coming back into the sky.
This is only one of many tales which might be told to show the state of superstition in those days. Learning, then, was confined to the few, and in many instances was used to mystify or terrorize the mass of the people and thus keep them submissive. At best, new ideas were slow to grow or to be believed.
For example, Pythagorus, the great Greek philosopher of the sixth century B. C., believed the earth to be a globe, but it was not until Columbus discovered America – twenty centuries later – that people generally began to know that it was not flat. Even in these modern days of the public school, the press, the telephone, the telegraph, the wireless and other means for the wide-spread distribution of knowledge, how slowly does truth find its way to acceptance! To this day, superstition is by no means dead.
Even Mark Twain, who scoffed at superstition all his life, often said that, as he came into the world with Halley's Comet, in the year 1835, so he expected to die in 1910, the year of the comet's next appearance. Strangely enough, his half-jesting prophecy was fulfilled, for he really did die in that year.
Astronomers to-day can figure out in advance what is to happen in the heavens with an exactness which would have seemed magical in olden times, and is hardly less astonishing even now. Their power is largely due to improved scientific instruments, proficiency in mathematics and greater accuracy in the measurement of time. Not only is the date of an eclipse of the sun now known in advance, but so also is the exact path of the shadow across the world, and the instant of its appearance in any given place.
We now have glanced briefly at a few of the features of early humanity's dependence upon the clocks of nature and the way in which they influenced its manner of life. We still depend upon these great primeval timepieces and we do it for the most part unconsciously, for our master clocks must still be set by the motion of the heavenly bodies.
That motion, which now we know to be really the revolution of our earth, is still the legislator and supreme court of time. But we have learned to make and carry everywhere a wonderful machine, whose revolving wheels and pointing hands keep tryst with the stars in the heavens and move to the rhythm of wheeling worlds. And so familiar is this talisman of man's making, that we forget to look beyond it or think of time at all save as the position of the hands upon the dial.
We carry with us carelessly a toy which tells tales upon the solar system – our watch is a pocket universe.
CHAPTER THREE
How Man Began to Model After Nature
We now have reached a point far ahead of our story and must take a backward step. We have been seeing man as a mere observer of nature; but man doesn't stop with nature as he finds it – his man-brain drives him forward; he must make improvements of his own. Animals may live and die and leave no trace save their bones, which for the most part soon disappear, but man always leaves traces behind him. He has always interfered with nature, or rather has modeled after nature, seeing in her work the revelations of principles and laws that he might utilize in varying ways for his own benefit and progress. Our material civilization is built up from the accumulated results of all this study and control of nature by hundreds of millions of busy brains and hands, through tens of thousands of years.
Here we are, then, living, in a sense on the top of the ages of human history, like the dwellers on a coral island. Hundreds of generations have toiled to raise the vast structure for us, like the little coral "polyps" which build their own lives into the mass, yet we take it all as a matter of course and rarely give a thought to the marvelous ways by which it has come about. You may have just glanced at your watch. To you, perhaps, a watch has always seemed merely a small mechanism which was bought in a store. That is true, and yet – remember this – the first manufacturer who had a hand in producing that watch for you, may have been a caveman.
In order to appreciate this development, let us return, therefore, for another rapid view of prehistoric times; life in its crudest form – one day much like another – a scanty population, huddled in little groups in places naturally sheltered – the simplest physical needs to be provided for – little thought of the past or care for the future – time-reckoning reduced to the single thought of appointment – no reason for measuring intervals – in these and other respects antiquity presented the greatest possible contrast to our complicated modern life.
The long-armed man of our first chapter noticed that as the sun moved, the shadows of the cliff also moved, as did all other shadows. As he formed habits of regularity, it was natural for him to perform a certain daily act