Popular Books on Natural Science. Bernstein Aaron David
to the right and left like the magnetic needle in a compass-box. Then he fastened a small metallic ball on each end of the steel bar. The balls were of the same weight, for this reason the steel bar was attracted by the earth with the same force at both ends; it therefore remained horizontal like the beam of a balance, when the same weight is lying in each of the scales. By this the attractive force of the earth was not suspended, it is true; but it was balanced by the equality of the weights. Thus the earth's attractive power was rendered ineffective for the disturbance of his apparatus.
Next he placed two large and very heavy metallic balls at the ends of the steel bar, not, however, touching them. The attractive force of the large balls began now to tell; it so attracted the small ones that they were drawn quite near to the large balls. When, then, the observer, by a gentle push, removed the small balls from their resting-place, the large ones were seen to draw them back again. But as the latter could not stop if once started, they crossed their resting-point, and began to vibrate near the large balls in the same manner as a pendulum does, when acted upon by the attractive force of the earth. Of course this force was exceedingly small, compared with that of the earth; and for that reason the vibrations of this pendulum were by far slower than those of a common one. This could not be otherwise; and from the slowness of a vibration, or from the small number of vibrations in a day, Cavendish computed the real weight of the earth.
Such an experiment, however, is always connected with extraordinary difficulties. The least expansion of the bar, or the unequal expansion or contraction of the balls, caused by a change of temperature, would vitiate the result; besides, the experiment must be made in a room surrounded on all sides by masses equal in weight. Moreover, the observer must not be stationed in the immediate neighborhood, lest this might exercise attractive force, and by that a disturbance. Finally, the air around must not be set in motion, lest it might derange the pendulum; and lastly, it is necessary not only to determine the size and weight of the balls, but also to obtain a form spherical to the utmost perfection; and also to take care that the centre of gravity of the balls be at the same time the centre of magnitude.
In order to remove all these difficulties, unusual precautions and extraordinary expenses were necessary. Reich, a naturalist in Freiberg, took infinite pains for the removal of these obstacles. To his observations and computations we owe the result he transmitted to us, viz.: that the mass total of the earth is nearly five and a half times heavier than a ball of water of the same size; or, in scientific language: The mean density of the earth is nearly five and a half times that of water. Thence results the real weight of the earth as being nearly fourteen quintillions of pounds. From this, again, it follows that the matter of the earth grows denser the nearer the centre; consequently it cannot be a hollow sphere.
If we consider, that from the earth's surface to its centre there is a distance of 3,956 miles, and that, with all our excavations, no one has yet penetrated even five miles, we have reason to be proud of investigations which, at least in part, disclose to man the unexplorable depths of the earth.
PART II.
VELOCITY
CHAPTER I.
VELOCITIES OF THE FORCES OF NATURE
In former times, when a man would speak of the rapidity with which light traverses space, most of his hearers thought it to be a scientific exaggeration or a myth. At present, however, when daily opportunity is afforded to admire, for example, the velocity of the electric current in the electro-magnetic telegraph, every one is well convinced of the fact, that there are forces in nature which traverse space with almost inconceivable velocity.
A wire a mile in length, if electrified at one end, becomes in the very instant electrified also at the other end. This and similar things every one may observe for himself; then, even the greatest sceptic among you will clearly see, that the change – or "electric force" – which an electrified wire undergoes at one end, is conveyed the length of a mile in a twinkle, verily as if a mile were but an inch.
But we learn more yet from this observation. The velocity with which the electric force travels is so great, that if a telegraph-wire, extending from New York to St. Louis and back again, is electrified at one end, the electric current will manifest itself at the other end in the same moment. From this it follows, that the electric force travels with such speed as to make a thousand miles in a space of time scarcely perceptible. Or, in other words, it travels a thousand miles in the same imperceptible fraction of a moment that it does a single mile.
And experience has taught us even more yet. However great the distance connected by a telegraphic wire may be, the result has always been, that the time which electricity needs to run that distance, is imperceptibly small; so that it may well be said, its passage occupies an indivisible moment of time.
One might even be led to believe that this is really no "running through" – in other words, that this transmission of effect from one end of the wire to the other end does not require any time at all, but that it happens, as if by enchantment, in one and the same instant. This, however, is not the case.
Ingenious experiments have been tried, to measure the velocity of the elective force. It is now undoubtedly proved, that it actually does require time for it to be transmitted from one place to another; that this certain amount of time is imperceptible to us for this reason, viz., that all distances which have ever been connected by telegraph, are yet too small, to make the time it takes for the current to go from one end to the other, perceptible to us.
Indeed, if our earth were surrounded by a wire, it would still be too short for common observation, because the electric force would run even through this space – twenty-five thousand miles very nearly – in the tenth part of a second.
Ingenious experiments have shown that the electric current moves two hundred and fifty thousand miles in a second. But how could this have been ascertained? And are we certain that the result is trustworthy?
The measurements have been made with great exactitude. To those who are not afraid of a little thinking, we will try to represent the way in which this measurement was taken; although a perfect representation of it is very difficult to give in a few words.
CHAPTER II.
HOW CAN THE VELOCITY OF THE ELECTRIC CURRENT BE ASCERTAINED
In order to illustrate, how the velocity of the electric current can actually be measured, we must first introduce the following:
Whenever a wire is to be magnetized by an electric machine, at the moment it touches the machine, a bright spark is seen at the end of the wire. The same spark is seen also at the other end of the wire, if touching another apparatus. Let us call the first spark the "entrance-spark," the other the "exit-spark." If a wire, many miles in extent, is put up, and led back to where the beginning of the wire is, both sparks may be seen by the same observer.
Now it is evident, that the exit-spark appears after the entrance-spark just as much later, as the time it took the electric current to run from one end of the wire to the other end. But in spite of all efforts made, to see whether the exit-spark actually appears later, the human eye has not been able to detect the difference. The cause of this is partly owing to the long duration of the impression upon the retina, which leads us to the belief, that we see objects much longer than we really do; partly, the immense rapidity with which the exit-spark follows the entrance-spark. From these two causes, we are tempted to believe both sparks to appear at the same moment.
By an ingenious and excellent means, however, this defect in our eye has been greatly diminished. It is well worth the trouble to read a description of the experiment attentively. The truly remarkable way in which it was tried, will please all who read it.
In order to measure the velocity of the electric current, the ends of a very long wire are placed one above the other. If, now, one makes the observation with the naked eye, both sparks will be found to stand in a vertical line, one above the other, as the points of a colon, thus (:).
But he who wishes to measure the velocity of the electrical current does not look upon the sparks with the naked eye, but into a small mirror, which, by a clock-work, is made to revolve upon an upright axis with exceedingly great rapidity. Thus he can see both sparks in the mirror. If the