On the various forces of nature and their relations to each other. Faraday Michael

On the various forces of nature and their relations to each other - Faraday Michael


Скачать книгу
of our subject; but the mind of man is not confined like the matter of his body, and thus he may and does travel outwards; for wherever his sight can pierce, there his observations can penetrate) is pretty nearly a round globe, having its surface disposed in a manner of which this terrestrial globe by my side is a rough model; so much is land and so much is water, and by looking at it here we see in a sort of map or picture how the world is formed upon its surface. Then, when we come to examine further, I refer you to this sectional diagram of the geological strata of the earth, in which there is a more elaborate view of what is beneath the surface of our globe. And when we come to dig into or examine it (as man does for his own instruction and advantage, in a variety of ways), we see that it is made up of different kinds of matter, subject to a very few powers, and all disposed in this strange and wonderful way, which gives to man a history – and such a history – as to what there is in those veins, in those rocks, the ores, the water springs, the atmosphere around, and all varieties of material substances, held together by means of forces in one great mass, 8,000 miles in diameter, that the mind is overwhelmed in contemplation of the wonderful history related by these strata (some of which are fine and thin like sheets of paper), – all formed in succession by the forces of which I have spoken.

      I now shall try to help your attention to what I may say by directing, to-day, our thoughts to one kind of power. You see what I mean by the term matter– any of these things that I can lay hold of with the hand, or in a bag (for I may take hold of the air by enclosing it in a bag) – they are all portions of matter with which we have to deal at present, generally or particularly, as I may require to illustrate my subject. Here is the sort of matter which we call water, – it is there ice [pointing to a block of ice upon the table], there water [pointing to the water boiling in a flask], here vapour – you see it issuing out from the top [of the flask]. Do not suppose that that ice and that water are two entirely different things, or that the steam rising in bubbles and ascending in vapour there is absolutely different from the fluid water. It may be different in some particulars, having reference to the amounts of power which it contains; but it is the same, nevertheless, as the great ocean of water around our globe, and I employ it here for the sake of illustration, because if we look into it we shall find that it supplies us with examples of all the powers to which I shall have to refer. For instance, here is water – it is heavy; but let us examine it with regard to the amount of its heaviness, or its gravity. I have before me a little glass vessel and scales [nearly equipoised scales, one of which contained a half-pint glass vessel], and the glass vessel is at present the lighter of the two; but if I now take some water and pour it in, you see that that side of the scales immediately goes down; that shews you (using common language, which I will not suppose for the present you have hitherto applied very strictly) that it is heavy: and if I put this additional weight into the opposite scale, I should not wonder if this vessel would hold water enough to weigh it down. [The Lecturer poured more water into the jar, which again went down.] Why do I hold the bottle above the vessel to pour the water into it? You will say, because experience has taught me that it is necessary. I do it for a better reason – because it is a law of nature that the water should fall towards the earth, and therefore the very means which I use to cause the water to enter the vessel are those which will carry the whole body of water down. That power is what we call gravity, and you see there [pointing to the scales] a good deal of water gravitating towards the earth. Now here [exhibiting a small piece of platinum2] is another thing which gravitates towards the earth as much as the whole of that water. See what a little there is of it —that little thing is heavier than so much water [placing the metal in opposite scales to the water]. What a wonderful thing it is to see that it requires so much water as that [a half-pint vessel full] to fall towards the earth, compared with the little mass of substance I have here! And again, if I take this metal [a bar of aluminium3 about eight times the bulk of the platinum], we find the water will balance that as well as it did the platinum; so that we get, even in the very outset, an example of what we want to understand by the words forces or powers.

      I have spoken of water, and first of all of its property of falling downwards. You know very well how the oceans surround the globe – how they fall round the surface, giving roundness to it, clothing it like a garment; but, besides that, there are other properties of water. Here, for instance, is some quick-lime, and if I add some water to it, you will find another power or property in the water.4 It is now very hot, it is steaming up, and I could perhaps light phosphorus or a lucifer match with it. Now, that could not happen without a force in the water to produce the result; but that force is entirely distinct from its power of falling to the earth. Again, here is another substance [some anhydrous sulphate of copper5] which will illustrate another kind of power. [The Lecturer here poured some water over the white sulphate of copper, which immediately became blue, evolving considerable heat at the same time.] Here is the same water, with a substance which heats nearly as much as the lime does; but see how differently. So great indeed is this heat in the case of lime, that it is sufficient sometimes (as you see here) to set wood on fire; and this explains what we have sometimes heard, of barges laden with quick-lime taking fire in the middle of the river, in consequence of this power of heat brought into play by a leakage of the water into the barge. You see how strangely different subjects for our consideration arise, when we come to think over these various matters, – the power of heat evolved by acting upon lime with water, and the power which water has of turning this salt of copper from white to blue.

      I want you now to understand the nature of the most simple exertion of this power of matter called weight, or gravity. Bodies are heavy – you saw that in the case of water when I placed it in the balance. Here I have what we call a weight [an iron half cwt.] – a thing called a weight, because in it the exercise of that power of pressing downwards is especially used for the purposes of weighing; and I have also one of these little inflated india-rubber bladders, which are very beautiful although very common (most beautiful things are common), and I am going to put the weight upon it, to give you a sort of illustration of the downward pressure of the iron, and of the power which the air possesses of resisting that pressure. It may burst, but we must try to avoid that [During the last few observations the Lecturer had succeeded in placing the half cwt. in a state of quiescence upon the inflated india-rubber ball, which consequently assumed a shape very much resembling a flat cheese with round edges.] There you see a bubble of air bearing half a hundred weight, and you must conceive for yourselves what a wonderful power there must be to pull this weight downwards, to sink it thus in the ball of air.

      Fig. 1.

      Let me now give you another illustration of this power. You know what a pendulum is. I have one here (fig. 1), and if I set it swinging, it will continue to swing to and fro. Now, I wonder whether you can tell me why that body oscillates to and fro – that pendulum bob as it is sometimes called. Observe, if I hold the straight stick horizontally, as high as the position of the balls at the two ends of its journey you see that the ball is in a higher position at the two extremities than it is when in the middle. Starting from one end of the stick, the ball falls towards the centre; and then rising again to the opposite end, it constantly tries to fall to the lowest point, swinging and vibrating most beautifully, and with wonderful properties in other respects – the time of its vibration, and so on – but concerning which we will not now trouble ourselves.

      If a gold leaf, or piece of thread, or any other substance, were hung where this ball is, it would swing to and fro in the same manner, and in the same time too. Do not be startled at this statement: I repeat, in the same manner and in the same time; and you will see by and by how this is. Now, that power which caused the water to descend in the balance – which made the iron weight press upon and flatten the bubble of air – which caused the swinging to and fro of the pendulum, – that power is entirely due to the attraction which there is between the falling body and the earth. Let us be slow and careful to comprehend this. It is not that the earth has any particular attraction towards bodies which fall to it, but, that all these bodies possess an attraction,


Скачать книгу

<p>2</p>

Page 22. Platinum, with one exception, the heaviest body known, is 21½ times heavier than water.

<p>3</p>

Page 22. Aluminium is 2½ times heavier than water.

<p>4</p>

Pages 23 and 24. Power or Property in Water.– This power – the heat by which the water is kept in a fluid state – is said, under ordinary circumstances, to be latent or insensible. When, however, the water changes its form, and, by uniting with the lime or sulphate of copper, becomes solid, the heat which retained it in a liquid state is evolved.

<p>5</p>

Page 23. Anhydrous Sulphate of Copper: sulphate of copper deprived of its water of crystallisation. To obtain it, the blue sulphate is calcined in an earthen crucible.