Dactylography. Faulds Henry
patches may be designed like so many pretty wall-paper designs, to enclose these patterns in books on finger-prints, but I, for one, cannot see that they throw any light on their genuine nature and origin. We find, under purely mechanical conditions, similar patterns produced in the ripples of a sub-aerial sand-drift and on a tidal shore. While writing this chapter, I saw to-day similar deltas, junctions, forks, and the like, on a lake whose frozen surface was thinly sprinkled with fine dry snow. The lines were mostly parallel, but where certain gusts or eddies had occurred they had been broken up into patterns not unlike those of finger-tips.
Ripple Marks in Sand (After Lyell).
In human skin, and in the anthropoid apes, those scroll-like patterns present almost infinite varieties of detail, and they often resemble a condensed railway plan, showing junctions, blind sidings, loops, triangles, and curves. There is one important distinction to be observed. The lineations of skin ridges are not always quite uniform in breadth, but broaden out sometimes or dwindle away. Again, they are dotted with sweat-pores and do not always, when printed from, show those pores in the same degree of patency or openness. Hence a little variation is inevitable when the same finger is several times impressed under varying conditions. It is not to be forgotten that, to a limited extent, this is true of a rigid box-wood engraving or steel plate, or lithographic stone, which give somewhat divergent results with varying degrees of pressure in printing, moisture of atmosphere or paper, and other conditions.
In this country the feet do not afford a favourable field of study to the dactylographer. So far as identification is concerned, little use could be made of them practically. In the East, however, it is different, and many years’ residence there gave me opportunities to observe that the toes, unrestrained by the use of stiff leather boots, are mobile and powerful, grasping as fingers do. The carpenter in Japan, for example, uses his toes to grip and steady the board he is sawing or hewing, while many of my readers must be familiar with the extraordinary agility of Japanese acrobats in the use of their feet and toes. In those cases the ridges are often varied in grouping, and well defined in development. A European baby generally begins life with similar simian-like powers. But so far as my own observations go, the patterns in the hands usually show a somewhat higher degree of evolution, a more complex and intricate network of lines, than those exhibited by the feet of the same person. Hence, apart from the greater convenience of inspecting them, the finger-prints have greater value for the purpose of identification. Cases, however, of crime, might readily occur even in this country, where the imprints of naked feet might yield important and irrefutable evidence of one’s presence at a scene of evil-doing.
But there are other important points of scientific interest besides their evidential value for identification. An important problem in evolutionary development, on which a considerable amount of literature begins to accumulate, is the serial relation of the limbs. Professor Bowditch, the distinguished biologist, of Harvard University, U.S., wrote me, of date November 18th, 1880, thus: —
“Dear Sir, – I have just read in Nature of October 28th, your article on the skin-furrows of the hand. The subject interested me because it so happened that fourteen years ago, at the suggestion of the late Professor Jeffries Wyman, I made some prints of the finger and toe tips with the hope of throwing some light on the question of the antero-posterior symmetry of the body. Since reading your article I have made some new impressions from the same individual, and it is interesting to notice the unchanged character of the cutaneous furrows.”
Some additional particulars are added in the letter, and a fine finger imprint was enclosed.
It is well to remember that the comparison of the ridges to those of a ploughed field does not always, and in every way, hold good. As I have elsewhere said:[C]
“The lines are not of uniform width. Ofttimes they may be likened rather to the mountains and valleys in a good survey. The ridges sometimes split or send little spurs down into the neighbouring valleys; at other times a ridge seems to cleave, giving rise to a form like a tarn or lake in a limestone range: here and there solitary islands rise in the valleys, and sometimes quite an archipelago takes the place of some of the commoner patterns. Indeed, the ordinary nomenclature of an ordinary physical geography map may be found quite helpful in laying a case clearly before a magistrate or a jury. And just as we find in the case of mountains and valleys in a map, every variety of shape may occur in a finger-pattern.”
Here it may be as well to state, as we shall see more precisely further on, that an English jury is well enabled to judge of the conformity of two patterns, one of which is suspect only, and the other officially printed from the fingers of some one in custody – by great photographic enlargement of the exhibits in the case, used as evidence.
The ridges, as may be seen by an enlarged photograph (as on frontispiece), do not always continue to be of quite uniform width throughout. Sometimes they taper away sharply like a railway point, or trickle off in diminishing dots; or again, especially where something like triangles occur, called deltas (after the Greek letter, Δ delta), they flatten out in breadth considerably. In old age they are found usually to have partaken of the general drying up and shrivelling of the tissues.
In the cold or shivering stage of ague and fevers, and in the affection called Reynaud’s disease, in which the fingers may tend to become pale and bloodless, some slight shrinking of the ridges also takes place, a point which might be of importance in the measurement of enlarged exhibits in the trial, for example, of an old Indian soldier or traveller who had been subject to fits of ague.
I have heard Sir A. Moseley Channel, who has informed himself well about finger-print matters, in a charge to a jury in a murder case, refer to the doubtful and unsatisfactory nature of evidence from a print done by a sweaty finger.
The fact that sweaty finger-marks have been adduced in evidence of crime makes it important for lawyers, police officials, judges and jurymen, to understand what is meant by such natural records. A mark from pure sweat would necessarily be excessively transient, as it consists chiefly of water and salines, and should properly contain no greasy matter whatever. Dr. Reginald Alcock, of the North Stafford Infirmary, in a recent paper read at Stoke-on-Trent, and since republished in The British Medical Journal, described his researches into the relation of the sweat-pores to practical surgery, and to the recognized difficulty in sterilising the skin for subsequent operation. Dr. Alcock shows that there may often be found remaining, after the best efforts to cleanse the surface, a stubborn residue of live and obnoxious matter in those tiny invisible ducts, matter which had insidiously gained entrance from without. Now such decaying or dead particles of foreign protoplasm would, I think, readily enough account for the very faint traces of oily matter sometimes observed, which oiliness makes sweat from a skin, fair and clean in the ordinary sense, leave slight but somewhat persistent traces on such substances as glass and the like.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.