Omphalos: An Attempt to Untie the Geological Knot. Gosse Philip Henry

Omphalos: An Attempt to Untie the Geological Knot - Gosse Philip Henry


Скачать книгу
a condensed summary of the leading points.

      If a curious person had watched the process of making the excavations that were preliminary to the boring of the Thames Tunnel, he would have observed that the labourers exposed successive layers of earth, differing much in colour, consistency, and general character. First, an accumulation of soil, consisting of decayed vegetable and animal matter, mingled with broken pottery, and other rubbish of man's production, was removed; then a layer of sand, gravel, and river mud; then a bed of reddish clay; then a layer of clay, mixed with silt or fine sandy mud; then a thin layer of silt, much filled with shells; then a stratum of stiff blue clay; then a layer of clay of more mottled character, containing a portion of silt, and some shells; then a stratum of very firm clay, so solid that it required to be broken with wedges; then a bed of gravel and sand of a green colour; and finally, a similar layer, but of a coarser texture.

      In the course of the hundred feet or so of perpendicular depth thus exposed, he would have seen a succession of layers, apparently deposited upon one another. But as yet he would have formed a very inadequate notion of the stratification of the earth's crust.

      With the knowledge thus gained, however, let him now make a little excursion into Hertfordshire; we will suppose at the time when the cuttings for the Great Northern Railway were being made. When he came near Cheshunt, he would see that the London clay, which he found underlying the Thames, crops out, or disappears by the stratum coming obliquely to the surface. He would see, however, another bed of clay – the plastic clay – beneath this, which now forms the superficial stratum, and continues to do so, till he gets beyond Hertford. There this stratum crops out; and the chalk, which for some time he has seen to underlie the plastic clay, now comes to the surface.

      Business or pleasure calls him to Bridlington on the Yorkshire coast; and he determines to make a pedestrian tour across the diameter of England to Whitehaven. He soon recognises the chalk, which constitutes the Wolds, and rises to about 800 feet above the sea level. Below its escarpment he traces the Kimmeridge clay, the uppermost of a series of strata more than 2,000 feet in thickness, that constitute the Oolitic system – including, among others, the coralline oolite, the calcareous grit, the cornbrash, thin, but rich in fossils; the lower sandstone and coal of the Cleveland hills, the alum shale, the marlstone, and the lower lias shale.

      Then comes a stratum of the saliferous system or the new red sandstone, with the red marls, perhaps not much short of a thousand feet deep. Below them the observer finds the strata of the magnesian limestone formation, for nearly 400 feet, resting on the great coal formations of vast depth. Of these the coal field of the West Riding is not less than 4,000 feet in depth, and beneath it lie the millstone grit, and the mountain limestone, 2,500 feet more, the latter displayed in noble grandeur on the faces of those wall-like precipices that inclose the romantic dales of the Swale and the Ure, and that subsequently tower in magnificent altitude on the sides of Pennygant and Ingleborough.

      On the western escarpment of the Pennine ridge, just as the traveller is entering Westmoreland, he would detect the bottom of the limestone; and here he would have an opportunity of seeing, what is rare in these parts, a stratum of the old red sandstone, lying between the former and the slaty rocks of the Cumbrian formations. And here at length, in the wild and magnificent scenery of these mountains, he sees the primitive and transition series, the greenstone, the sienite, and the granite, each of which is discernible in succession on the face of one or other of the lofty Fells of Cumberland.

      Our traveller now comes home, and, musing on what he has seen, counts up some thirty or more distinct strata lying in regular succession one on another. But he has not seen all the world, nor even all England; but he reads the results of many independent observations, and finds that while, for the most part, the strata which he has seen are common to the whole surface of the globe, and while the order of their superposition is invariable everywhere, others are in some parts added, while perhaps some of those which he has observed are locally absent. Thus he is able to form a more distinct idea of the stratification of the earth's crust as a whole. It is composed of about forty distinct formations, generally increasing in thickness as we go downwards, so that the whole cannot be much less than ten miles in depth, supposing them in any locality to be all present, and to be lying in the horizontal plane.

      Mathematicians have satisfactorily determined that the mean density of the globe is about five-and-a-half times that of water, or about twice that of granite, a fact inconsistent with any other supposition than that the interior is occupied by substances maintained in a fluid state by intense heat. The lowest point that has yet been patent to human observation is occupied by the granite, a compound rock, which bears evident marks of having been once in a state of fusion, and of having cooled slowly, and that under immense pressure, contracting and crystallizing as it parted with its heat. There is every reason to believe that the granite is not defined at its inferior surface, but that it merges into the molten mass, probably still solidifying.

      After the outer portion of the granite had cooled sufficiently to become solid, there is evidence that it was covered by water, agitated by powerful currents, and probably in a heated state. The action of these currents disintegrated the rock, and deposited the constituent substances at the bottom of the sea – on the surface, and in the hollows, of the granite. For there is reason to think that the contraction of the primitive rock in the process of cooling, produced irregular undulations or crumplings of the surface, and frequent fractures and dislocations, elevating some parts and depressing others. The gneiss, the mica-schist, and the clay-slate, which are found immediately overlying the granitic rock in strata of vast thickness, are but the components of granite, separated and rearranged. "If we imagine common granite coarsely pounded, and thrown into a vessel of water, it will arrange itself at the bottom of the vessel in a condition very much like that of gneiss, which is indeed nothing else than stratified granite. If the water in which the pounded rock is thrown is moving along at a slow rate, and the clayey portion of the granite, called felspar, happens to be somewhat decomposed, as it often is, then the felspar (which is so truly clay that it makes the best possible material for the use of the potteries) and the thin shining plates of mica, will be carried further by the water than the lumps of white quartz or flint sand, which, with the other two ingredients, made up the granite; and the two former will be deposited in layers, which, by passing a galvanic current through them, would in time become mica-schist. If the mica were absent, or if the clay were deposited without it, owing to any cause, then a similar galvanic current would turn the deposit into something like clay-slate."25

      The deposition of these strata, being formed out of granite, supposes the pre-existence of that rock; and as they occur in vast thicknesses, even of many thousand feet, then separation, deposition, and reconsolidation must have occupied, however rapidly we may suppose the processes to have been accomplished, considerable periods of time.

      In these lower rocks, no trace of organic remains has been found. The shoreless ocean that covered the cooling surface of the earth's crust, harboured no polype or sponge, no rhizopod or infusorium, and the angles and clefts of the granite were fringed by no fucus, or conferva: all was waste and void. And if certain parts were elevated above the waters, the bleak and barren points were not clothed with grass, or moss, or even a lichen, and no animal wandered over their ridges. Or, if such did exist, either in land or water, all vestiges of their presence have been destroyed by the agency of the intense heat that subsequently prevailed.

      But, in the numerous strata that overlie the rocks of granitic origin, there are found, in varying abundance, proofs that, when they were deposited, the surface of our earth had become the abode of organic life. Zoophytes lived in the ocean, some of which were engaged in secreting lime from the water, and depositing it in coral-reefs; stalked and jointed Star-fishes waved like lilies of stone from the submerged rocks; Sea-worms twined over the mud; mailed Crustaceans swam to and fro; and Mollusks, both bivalve and univalve, crawled over the ledges or reposed in the crevices. The remains of these occur in the Silurian rocks that lie immediately on the primitive granitic formations of Cumberland and North Wales. The construction of the coral-reefs of that deposit, in particular, must have occupied a lengthened period, continuing to go on, "month after month, year after year, century after century, until at length the depth changed, in which they could most conveniently live, or, owing to some other cause, their labours were brought to a close, and


Скачать книгу

<p>25</p>

Ansted's Ancient World, 18.