The Foundations of the Origin of Species. Darwin Charles

The Foundations of the Origin of Species - Darwin Charles


Скачать книгу
is to inheritance, in almost every case of the most trifling, as well as of the most remarkable congenital peculiarities191. The term congenital peculiarity, I may remark, is a loose expression and can only mean a peculiarity apparent when the part affected is nearly or fully developed: in the Second Part, I shall have to discuss at what period of the embryonic life connatal peculiarities probably first appear; and I shall then be able to show from some evidence, that at whatever period of life a new peculiarity first appears, it tends hereditarily to appear at a corresponding period192. Numerous though slight changes, slowly supervening in animals during mature life (often, though by no means always, taking the form of disease), are, as stated in the first paragraphs, very often hereditary. In plants, again, the buds which assume a different character from their stock likewise tend to transmit their new peculiarities. There is not sufficient reason to believe that either mutilations193 or changes of form produced by mechanical pressure, even if continued for hundreds of generations, or that any changes of structure quickly produced by disease, are inherited; it would appear as if the tissue of the part affected must slowly and freely grow into the new form, in order to be inheritable. There is a very great difference in the hereditary tendency of different peculiarities, and of the same peculiarity, in different individuals and species; thus twenty thousand seeds of the weeping ash have been sown and not one come up true; – out of seventeen seeds of the weeping yew, nearly all came up true. The ill-formed and almost monstrous “Niata” cattle of S. America and Ancon sheep, both when bred together and when crossed with other breeds, seem to transmit their peculiarities to their offspring as truly as the ordinary breeds. I can throw no light on these differences in the power of hereditary transmission. Breeders believe, and apparently with good cause, that a peculiarity generally becomes more firmly implanted after having passed through several generations; that is if one offspring out of twenty inherits a peculiarity from its parents, then its descendants will tend to transmit this peculiarity to a larger proportion than one in twenty; and so on in succeeding generations. I have said nothing about mental peculiarities being inheritable for I reserve this subject for a separate chapter.

      Causes of Variation

      Attention must here be drawn to an important distinction in the first origin or appearance of varieties: when we see an animal highly kept producing offspring with an hereditary tendency to early maturity and fatness; when we see the wild-duck and Australian dog always becoming, when bred for one or a few generations in confinement, mottled in their colours; when we see people living in certain districts or circumstances becoming subject to an hereditary taint to certain organic diseases, as consumption or plica polonica, – we naturally attribute such changes to the direct effect of known or unknown agencies acting for one or more generations on the parents. It is probable that a multitude of peculiarities may be thus directly caused by unknown external agencies. But in breeds, characterized by an extra limb or claw, as in certain fowls and dogs; by an extra joint in the vertebræ; by the loss of a part, as the tail; by the substitution of a tuft of feathers for a comb in certain poultry; and in a multitude of other cases, we can hardly attribute these peculiarities directly to external influences, but indirectly to the laws of embryonic growth and of reproduction. When we see a multitude of varieties (as has often been the case, where a cross has been carefully guarded against) produced from seeds matured in the very same capsule194, with the male and female principle nourished from the same roots and necessarily exposed to the same external influences; we cannot believe that the endless slight differences between seedling varieties thus produced, can be the effect of any corresponding difference in their exposure. We are led (as Müller has remarked) to the same conclusion, when we see in the same litter, produced by the same act of conception, animals considerably different.

      As variation to the degree here alluded to has been observed only in organic beings under domestication, and in plants amongst those most highly and long cultivated, we must attribute, in such cases, the varieties (although the difference between each variety cannot possibly be attributed to any corresponding difference of exposure in the parents) to the indirect effects of domestication on the action of the reproductive system195. It would appear as if the reproductive powers failed in their ordinary function of producing new organic beings closely like their parents; and as if the entire organization of the embryo, under domestication, became in a slight degree plastic196. We shall hereafter have occasion to show, that in organic beings, a considerable change from the natural conditions of life, affects, independently of their general state of health, in another and remarkable manner the reproductive system. I may add, judging from the vast number of new varieties of plants which have been produced in the same districts and under nearly the same routine of culture, that probably the indirect effects of domestication in making the organization plastic, is a much more efficient source of variation than any direct effect which external causes may have on the colour, texture, or form of each part. In the few instances in which, as in the Dahlia197, the course of variation has been recorded, it appears that domestication produces little effect for several generations in rendering the organization plastic; but afterwards, as if by an accumulated effect, the original character of the species suddenly gives way or breaks.

      On Selection

      We have hitherto only referred to the first appearance in individuals of new peculiarities; but to make a race or breed, something more is generally198 requisite than such peculiarities (except in the case of the peculiarities being the direct effect of constantly surrounding conditions) should be inheritable, – namely the principle of selection, implying separation. Even in the rare instances of sports, with the hereditary tendency very strongly implanted, crossing must be prevented with other breeds, or if not prevented the best characterized of the half-bred offspring must be carefully selected. Where the external conditions are constantly tending to give some character, a race possessing this character will be formed with far greater ease by selecting and breeding together the individuals most affected. In the case of the endless slight variations produced by the indirect effects of domestication on the action of the reproductive system, selection is indispensable to form races; and when carefully applied, wonderfully numerous and diverse races can be formed. Selection, though so simple in theory, is and has been important to a degree which can hardly be overrated. It requires extreme skill, the results of long practice, in detecting the slightest difference in the forms of animals, and it implies some distinct object in view; with these requisites and patience, the breeder has simply to watch for every the smallest approach to the desired end, to select such individuals and pair them with the most suitable forms, and so continue with succeeding generations. In most cases careful selection and the prevention of accidental crosses will be necessary for several generations, for in new breeds there is a strong tendency to vary and especially to revert to ancestral forms: but in every succeeding generation less care will be requisite for the breed will become truer; until ultimately only an occasional individual will require to be separated or destroyed. Horticulturalists in raising seeds regularly practise this, and call it “roguing,” or destroying the “rogues” or false varieties. There is another and less efficient means of selection amongst animals: namely repeatedly procuring males with some desirable qualities, and allowing them and their offspring to breed freely together; and this in the course of time will affect the whole lot. These principles of selection have been methodically followed for scarcely a century; but their high importance is shown by the practical results, and is admitted in the writings of the most celebrated agriculturalists and horticulturalists; – I need only name Anderson, Marshall, Bakewell, Coke, Western, Sebright and Knight.

      Even in well-established breeds the individuals of which to an unpractised eye would appear absolutely similar, which would give, it might have been thought, no scope to selection, the whole appearance of the animal has been changed in a few years (as in the case of Lord Western’s sheep), so that practised agriculturalists could scarcely credit that a change had not been effected by a cross with other breeds. Breeders both of plants and animals frequently give their means of selection greater scope, by crossing


Скачать книгу

<p>191</p>

See Origin, Ed. i. p. 13.

<p>192</p>

Origin, Ed. i. p. 86, vi. p. 105.

<p>193</p>

It is interesting to find that though the author, like his contemporaries, believed in the inheritance of acquired characters, he excluded the case of mutilation.

<p>194</p>

This corresponds to Origin, Ed. i. p. 10, vi. p. 9.

<p>195</p>

Origin, Ed. i. p. 8, vi. p. 10.

<p>196</p>

For plasticity see Origin, Ed. i. pp. 12, 132.

<p>197</p>

Var. under Dom., Ed. ii. I. p. 393.

<p>198</p>

Selection is here used in the sense of isolation, rather than as implying the summation of small differences. Professor Henslow in his Heredity of Acquired Characters in Plants, 1908, p. 2, quotes from Darwin’s Var. under Dom., Ed. i. II. p. 271, a passage in which the author, speaking of the direct action of conditions, says: – “A new sub-variety would thus be produced without the aid of selection.” Darwin certainly did not mean to imply that such varieties are freed from the action of natural selection, but merely that a new form may appear without summation of new characters. Professor Henslow is apparently unaware that the above passage is omitted in the second edition of Var. under Dom., II. p. 260.