The Variation of Animals and Plants under Domestication — Volume 2. Darwin Charles

The Variation of Animals and Plants under Domestication — Volume 2 - Darwin Charles


Скачать книгу
case a father and his four children all became blind at twenty-one years old; in another, a grandmother grew blind at thirty-five, her daughter at nineteen, and three grandchildren at the ages of thirteen and eleven. (14/39. Prosper Lucas 'Hered. Nat.' tome 1 page 400.) So with deafness, two brothers, their father and paternal grandfather, all became deaf at the age of forty. (14/40. Sedgwick ibid July 1861 page 202.)

      Esquirol gives several striking instances of insanity coming on at the same age, as that of a grandfather, father, and son, who all committed suicide near their fiftieth year. Many other cases could be given, as of a whole family who became insane at the age of forty. (14/41. Piorry page 109; Prosper Lucas tome 2 page 759.) Other cerebral affections sometimes follow the same rule, — for instance, epilepsy and apoplexy. A woman died of the latter disease when sixty-three years old; one of her daughters at forty-three, and the other at sixty-seven: the latter had twelve children, who all died from tubercular meningitis. (14/42. Prosper Lucas tome 2 page 748.) I mention this latter case because it illustrates a frequent occurrence, namely, a change in the precise nature of an inherited disease, though still affecting the same organ.

      Asthma has attacked several members of the same family when forty years old, and other families during infancy. The most different diseases, such as angina pectoris, stone in the bladder, and various affections of the skin, have appeared in successive generations at nearly the same age. The little finger of a man began from some unknown cause to grow inwards, and the same finger in his two sons began at the same age to bend inwards in a similar manner. Strange and inexplicable neuralgic affections have caused parents and children to suffer agonies at about the same period of life. (14/43. Prosper Lucas tome 3 pages 678, 700, 702; Sedgwick ibid April 1863 page 449 and July 1863 page 162. Dr. J. Steinan 'Essay on Hereditary Disease' 1843 pages 27, 34.)

      I will give only two other cases, which are interesting as illustrating the disappearance as well as the appearance of disease at the same age. Two brothers, their father, their paternal uncles, seven cousins, and their paternal grandfather, were all similarly affected by a skin-disease, called pityriasis versicolor; "the disease, strictly limited to the males of the family (though transmitted through the females), usually appeared at puberty, and disappeared at about the age of forty or forty-five years." The second case is that of four brothers, who when about twelve years old suffered almost every week from severe headaches, which were relieved only by a recumbent position in a dark room. Their father, paternal uncles, paternal grandfather, and granduncles all suffered in the same way from headaches, which ceased at the age of fifty-four or fifty-five in all those who lived so long. None of the females of the family were affected. (14/44. These cases are given by Mr. Sedgwick on the authority of Dr. H. Stewart in 'Med. — Chirurg. Review' April 1863 pages 449, 477.)]

      It is impossible to read the foregoing accounts, and the many others which have been recorded, of diseases coming on during three or even more generations in several members of the same family at the same age, especially in the case of rare affections in which the coincidence cannot be attributed to chance, and to doubt that there is a strong tendency to inheritance in disease at corresponding periods of life. When the rule fails, the disease is apt to come on earlier in the child than in the parent; the exceptions in the other direction being very much rarer. Dr. Lucas (14/45. 'Hered. Nat.' tome 2 page 852.) alludes to several cases of inherited diseases coming on at an earlier period. I have already given one striking instance with blindness during three generations; and Mr. Bowman remarks that this frequently occurs with cataract. With cancer there seems to be a peculiar liability to earlier inheritance: Sir J. Paget, who has particularly attended to this subject, and tabulated a large number of cases, informs me that he believes that in nine cases out of ten the later generation suffers from the disease at an earlier period than the previous generation. He adds, "In the instances in which the opposite relation holds, and the members of later generations have cancer at a later age than their predecessors, I think it will be found that the non- cancerous parents have lived to extreme old ages." So that the longevity of a non-affected parent seems to have the power of influencing the fatal period in the offspring; and we thus apparently get another element of complexity in inheritance.

      The facts, showing that with certain diseases the period of inheritance occasionally or even frequently advances, are important with respect to the general descent-theory, for they render it probable that the same thing would occur with ordinary modifications of structure. The final result of a long series of such advances would be the gradual obliteration of characters proper to the embryo and larva, which would thus come to resemble more and more closely the mature parent-form. But any structure which was of service to the embryo or larva would be preserved by the destruction at this stage of growth of each individual which manifested any tendency to lose its proper character at too early an age.

      Finally, from the numerous races of cultivated plants and domestic animals, in which the seeds or eggs, the young or old, differ from one another and from those of the parent-species; — from the cases in which new characters have appeared at a particular period, and afterwards been inherited at the same period; — and from what we know with respect to disease, we must believe in the truth of the great principle of inheritance at corresponding periods of life.

       SUMMARY OF THE THREE PRECEDING CHAPTERS.

      Strong as is the force of inheritance, it allows the incessant appearance of new characters. These, whether beneficial or injurious, — of the most trifling importance, such as a shade of colour in a flower, a coloured lock of hair, or a mere gesture, — or of the highest importance, as when affecting the brain, or an organ so perfect and complex as the eye, — or of so grave a nature as to deserve to be called a monstrosity, — or so peculiar as not to occur normally in any member of the same natural class, — are often inherited by man, by the lower animals, and plants. In numberless cases it suffices for the inheritance of a peculiarity that one parent alone should be thus characterised. Inequalities in the two sides of the body, though opposed to the law of symmetry, may be transmitted. There is ample evidence that the effects of mutilations and of accidents, especially or perhaps exclusively when followed by disease, are occasionally inherited. There can be no doubt that the evil effects of the long-continued exposure of the parent to injurious conditions are sometimes transmitted to the offspring. So it is, as we shall see in a future chapter, with the effects of the use and disuse of parts, and of mental habits. Periodical habits are likewise transmitted, but generally, as it would appear, with little force.

      Hence we are led to look at inheritance as the rule, and non-inheritance as the anomaly. But this power often appears to us in our ignorance to act capriciously, transmitting a character with inexplicable strength or feebleness. The very same peculiarity, as the weeping habit of trees, silky feathers, etc., may be inherited either firmly or not at all by different members of the same group, and even by different individuals of the same species, though treated in the same manner. In this latter case we see that the power of transmission is a quality which is merely individual in its attachment. As with single characters, so it is with the several concurrent slight differences which distinguish sub-varieties or races; for of these, some can be propagated almost as truly as species, whilst others cannot be relied on. The same rule holds good with plants, when propagated by bulbs, offsets, etc., which in one sense still form parts of the same individual, for some varieties retain or inherit through successive bud-generations their character far more truly than others.

      Some characters not proper to the parent-species have certainly been inherited from an extremely remote epoch, and may therefore be considered as firmly fixed. But it is doubtful whether length of inheritance in itself gives fixedness of character; though the chances are obviously in favour of any character which has long been transmitted true or unaltered still being transmitted true as long as the conditions of life remain the same. We know that many species, after having retained the same character for countless ages, whilst living under their natural conditions, when domesticated have varied in the most diversified manner, that is, have failed to transmit their original form; so that no character appears to be absolutely fixed. We can sometimes account for the failure of inheritance by the conditions of life being opposed to the development of certain characters; and still oftener, as with plants cultivated by grafts and buds, by the conditions causing new and slight modifications incessantly to appear. In this latter case it is not that inheritance wholly


Скачать книгу