The Variation of Animals and Plants Under Domestication, Volume II (of 2). Darwin Charles

The Variation of Animals and Plants Under Domestication, Volume II (of 2) - Darwin Charles


Скачать книгу
reversion; and they are intelligible on the belief that characters common to the grandparent and grandchild of the same sex are present, though latent, in the intermediate parent of the opposite sex.

      The subject of latent characters is so important, as we shall see in a future chapter, that I will give another illustration. Many animals have the right and left sides of their body unequally developed: this is well known to be the case with flat-fish, in which the one side differs in thickness and colour, and in the shape of the fins, from the other; and during the growth of the young fish one eye actually travels, as shown by Steenstrup, from the lower to the upper surface.122 In most flat-fishes the left is the blind side, but in some it is the right; though in both cases "wrong fishes," which are developed in a reversed manner to what is usual, occasionally occur, and in Platessa flesus the right or left side is indifferently developed, the one as often as the other. With gasteropods or shell-fish, the right and left sides are extremely unequal; the far greater number of species are dextral, with rare and occasional reversals of development, and some few are normally sinistral; but certain species of Bulimus, and, many Achatinellæ,123 are as often sinistral as dextral. I will give an analogous case in the great Articulate kingdom: the two sides of Verruca124 are so wonderfully unlike, that without careful dissection it is extremely difficult to recognise the corresponding parts on the opposite sides of the body; yet it is apparently a mere matter of chance whether it be the right or the left side that undergoes so singular an amount of change. One plant is known to me125 in which the flower, according as it stands on the one or other side of the spike, is unequally developed. In all the foregoing cases the two sides of the animal are perfectly symmetrical at an early period of growth. Now, whenever a species is as liable to be unequally developed on the one as on the other side, we may infer that the capacity for such development is present, though latent, in the undeveloped side. And as a reversal of development occasionally occurs in animals of many kinds, this latent capacity is probably very common.

      The best yet simplest instances of characters lying dormant are, perhaps, those previously given, in which chickens and young pigeons, raised from a cross between differently coloured birds, are at first of one colour, but in a year or two acquire feathers of the colour of the other parent; for in this case the tendency to a change of plumage is clearly latent in the young bird. So it is with hornless breeds of cattle, some of which acquire, as they grow old, small horns. Purely bred black and white bantams, and some other fowls, occasionally assume, with advancing years, the red feathers of the parent-species. I will here add a somewhat different case, as it connects in a striking manner latent characters of two classes. Mr. Hewitt126 possessed an excellent Sebright gold-laced hen bantam, which, as she became old, grew diseased in her ovaria, and assumed male characters. In this breed the males resemble the females in all respects except in their combs, wattles, spurs, and instincts; hence it might have been expected that the diseased hen would have assumed only those masculine characters which are proper to the breed, but she acquired, in addition, well-arched tail sickle-feathers quite a foot in length, saddle-feathers on the loins, and hackles on the neck, – ornaments which, as Mr. Hewitt remarks, "would be held as abominable in this breed." The Sebright bantam is known127 to have originated about the year 1800 from a cross between a common bantam and a Polish fowl, recrossed by a hen-tailed bantam, and carefully selected; hence there can hardly be a doubt that the sickle-feathers and hackles which appeared in the old hen were derived from the Polish fowl or common bantam; and we thus see that not only certain masculine characters proper to the Sebright bantam, but other masculine characters derived from the first progenitors of the breed, removed by a period of above sixty years, were lying latent in this hen-bird, ready to be evolved as soon as her ovaria became diseased.

      From these several facts it must be admitted that certain characters, capacities, and instincts may lie latent in an individual, and even in a succession of individuals, without our being able to detect the least signs of their presence. We have already seen that the transmission of a character from the grandparent to the grandchild, with its apparent omission in the intermediate parent of the opposite sex, becomes simple on this view. When fowls, pigeons, or cattle of different colours are crossed, and their offspring change colour as they grow old, or when the crossed turbit acquired the characteristic frill after its third moult, or when purely-bred bantams partially assume the red plumage of their prototype, we cannot doubt that these qualities were from the first present, though latent, in the individual animal, like the characters of a moth in the caterpillar. Now, if these animals had produced offspring before they had acquired with advancing age their new characters, nothing is more probable than that they would have transmitted them to some of their offspring, which in this case would in appearance have received such characters from their grandparents or more distant progenitors. We should then have had a case of reversion, that is, of the reappearance in the child of an ancestral character, actually present, though during youth completely latent, in the parent; and this we may safely conclude is what occurs with reversions of all kinds to progenitors however remote.

      This view of the latency in each generation of all the characters which appear through reversion, is also supported by their actual presence in some cases during early youth alone, or by their more frequent appearance and greater distinctness at this age than during maturity. We have seen that this is often the case with the stripes on the legs and faces of the several species of the horse-genus. The Himalayan rabbit, when crossed, sometimes produces offspring which revert to the parent silver-grey breed, and we have seen that in purely bred animals pale-grey fur occasionally reappears during early youth. Black cats, we may feel assured, would occasionally produce by reversion tabbies; and on young black kittens, with a pedigree128 known to have been long pure, faint traces of stripes may almost always be seen which afterwards disappear. Hornless Suffolk cattle occasionally produce by reversion horned animals; and Youatt129 asserts that even in hornless individuals "the rudiment of a horn may be often felt at an early age."

      No doubt it appears at first sight in the highest degree improbable that in every horse of every generation there should be a latent capacity and tendency to produce stripes, though these may not appear once in a thousand generations; that in every white, black, or other coloured pigeon, which may have transmitted its proper colour during centuries, there should be a latent capacity in the plumage to become blue and to be marked with certain characteristic bars; that in every child in a six-fingered family there should be the capacity for the production of an additional digit; and so in other cases. Nevertheless there is no more inherent improbability in this being the case than in a useless and rudimentary organ, or even in only a tendency to the production of a rudimentary organ, being inherited during millions of generations, as is well known to occur with a multitude of organic beings. There is no more inherent improbability in each domestic pig, during a thousand generations, retaining the capacity and tendency to develop great tusks under fitting conditions, than in the young calf having retained for an indefinite number of generations rudimentary incisor teeth, which never protrude through the gums.

      I shall give at the end of the next chapter a summary of the three preceding chapters; but as isolated and striking cases of reversion have here been chiefly insisted on, I wish to guard the reader against supposing that reversion is due to some rare or accidental combination of circumstances. When a character, lost during hundreds of generations, suddenly reappears, no doubt some such combination must occur; but reversions may be constantly observed, at least to the immediately preceding generations, in the offspring of most unions. This has been universally recognised in the case of hybrids and mongrels, but it has been recognised simply from the difference between the united forms rendering the resemblance of the offspring to their grandparents or more remote progenitors of easy detection. Reversion is likewise almost invariably the rule, as Mr. Sedgwick has shown, with certain diseases. Hence we must conclude that a tendency to this peculiar form of transmission is an integral part of the general law of inheritance.

      Monstrosities.– A large number of monstrous growths and of lesser anomalies are admitted by every one to


Скачать книгу

<p>122</p>

Prof. Thomson on Steenstrup's Views on the Obliquity of Flounders: 'Annals and Mag. of Nat. Hist.,' May, 1865, p. 361.

<p>123</p>

Dr. E. von Martens, in 'Annals and Mag. of Nat. Hist.,' March, 1866, p. 209.

<p>124</p>

Darwin, 'Balanidæ,' Ray Soc., 1854, p. 499: see also the appended remarks on the apparently capricious development of the thoracic limbs on the right and left sides in the higher crustaceans.

<p>125</p>

Mormodes ignea: Darwin, 'Fertilization of Orchids,' 1862, p. 251.

<p>126</p>

'Journal of Horticulture,' July, 1864, p. 38. I have had the opportunity of examining these remarkable feathers through the kindness of Mr. Tegetmeier.

<p>127</p>

'The Poultry Book,' by Mr. Tegetmeier, 1866, p. 241.

<p>128</p>

Carl Vogt, 'Lectures on Man,' Eng. translat., 1864, p. 411.

<p>129</p>

On Cattle, p. 174.