The Variation of Animals and Plants Under Domestication, Volume II (of 2). Darwin Charles

The Variation of Animals and Plants Under Domestication, Volume II (of 2) - Darwin Charles


Скачать книгу
in which the parent has had an organ injured on one side, and more than one child has been born with the same organ affected on the same side, the chances against mere coincidence are enormous. But perhaps the most remarkable and trustworthy fact is that given by Dr. Brown-Séquard,63 namely, that many young guinea-pigs inherited an epileptic tendency from parents which had been subjected to a particular operation, inducing in the course of a few weeks a convulsive disease like epilepsy: and it should be especially noted that this eminent physiologist bred a large number of guinea-pigs from animals which had not been operated on, and not one of these manifested the epileptic tendency. On the whole, we can hardly avoid admitting, that injuries and mutilations, especially when followed by disease, or perhaps exclusively when thus followed, are occasionally inherited.

      Although many congenital monstrosities are inherited, of which examples have already been given, and to which may be added the lately recorded case of the transmission during a century of hare-lip with a cleft-palate in the writer's own family,64 yet other malformations are rarely or never inherited. Of these later cases, many are probably due to injuries in the womb or egg, and would come under the head of non-inherited injuries or mutilations. With plants, a long catalogue of inherited monstrosities of the most serious and diversified nature could easily be given; and with plants, there is no reason to suppose that monstrosities are caused by direct injuries to the seed or embryo.

Causes of Non-inheritance

      A large number of cases of non-inheritance are intelligible on the principle, that a strong tendency to inheritance does exist, but that it is overborne by hostile or unfavourable conditions of life. No one would expect that our improved pigs, if forced during several generations to travel about and root in the ground for their own subsistence, would transmit, as truly as they now do, their tendency to fatten, and their short muzzles and legs. Dray-horses assuredly would not long transmit their great size and massive limbs, if compelled to live on a cold, damp mountainous region; we have indeed evidence of such deterioration in the horses which have run wild on the Falkland Islands. European dogs in India often fail to transmit their true character. Our sheep in tropical countries lose their wool in a few generations. There seems also to be a close relation between certain peculiar pastures and the inheritance of an enlarged tail in fat-tailed sheep, which form one of the most ancient breeds in the world. With plants, we have seen that the American varieties of maize lose their proper character in the course of two or three generations, when cultivated in Europe. Our cabbages, which here come so true by seed, cannot form heads in hot countries. Under changed circumstances, periodical habits of life soon fail to be transmitted, as the period of maturity in summer and winter wheat, barley, and vetches. So it is with animals; for instance, a person whose statement I can trust, procured eggs of Aylesbury ducks from that town, where they are kept in houses and are reared as early as possible for the London market; the ducks bred from these eggs in a distant part of England, hatched their first brood on January 24th, whilst common ducks, kept in the same yard and treated in the same manner, did not hatch till the end of March; and this shows that the period of hatching was inherited. But the grandchildren of these Aylesbury ducks completely lost their early habit of incubation, and hatched their eggs at the same time with the common ducks of the same place.

      Many cases of non-inheritance apparently result from the conditions of life continually inducing fresh variability. We have seen that when the seeds of pears, plums, apples, &c., are sown, the seedlings generally inherit some degree of family likeness from the parent-variety. Mingled with these seedlings, a few, and sometimes many, worthless, wild-looking plants commonly appear; and their appearance may be attributed to the principle of reversion. But scarcely a single seedling will be found perfectly to resemble the parent-form; and this, I believe, may be accounted for by constantly recurring variability induced by the conditions of life. I believe in this, because it has been observed that certain fruit-trees truly propagate their kind whilst growing on their own roots, but when grafted on other stocks, and by this process their natural state is manifestly affected, they produce seedlings which vary greatly, departing from the parental type in many characters.65 Metzger, as stated in the ninth chapter, found that certain kinds of wheat brought from Spain and cultivated in Germany, failed during many years to reproduce themselves truly; but that at last, when accustomed to their new conditions, they ceased to be variable, – that is, they became amenable to the power of inheritance. Nearly all the plants which cannot be propagated with any approach to certainty by seed, are kinds which have long been propagated by buds, cuttings, offsets, tubers, &c., and have in consequence been frequently exposed during their individual lives to widely diversified conditions of life. Plants thus propagated become so variable, that they are subject, as we have seen in the last chapter, even to bud-variation. Our domesticated animals, on the other hand, are not exposed during their individual lives to such extremely diversified conditions, and are not liable to such extreme variability; therefore they do not lose the power of transmitting most of their characteristic features. In the foregoing remarks on non-inheritance, crossed breeds are of course excluded, as their diversity mainly depends on the unequal development of characters derived from either parent, modified by the principles of reversion and prepotency.

Conclusion

      It has, I think, been shown in the early part of this chapter how strongly new characters of the most diversified nature, whether normal or abnormal, injurious or beneficial, whether affecting organs of the highest or most trifling importance, are inherited. Contrary to the common opinion, it is often sufficient for the inheritance of some peculiar character, that one parent alone should possess it, as in most cases in which the rarer anomalies have been transmitted. But the power of transmission is extremely variable: in a number of individuals descended from the same parents, and treated in the same manner, some display this power in a perfect manner, and in some it is quite deficient; and for this difference no reason can be assigned. In some cases the effects of injuries or mutilations apparently are inherited; and we shall see in a future chapter that the effects of the long-continued use and disuse of parts are certainly inherited. Even those characters which are considered the most fluctuating, such as colour, are with rare exceptions transmitted much more forcibly than is generally supposed. The wonder, indeed, in all cases is not that any character should be transmitted, but that the power of inheritance should ever fail. The checks to inheritance, as far as we know them, are, firstly, circumstances hostile to the particular character in question; secondly, conditions of life incessantly inducing fresh variability; and lastly, the crossing of distinct varieties during some previous generation, together with reversion or atavism – that is, the tendency in the child to resemble its grand-parents or more remote ancestors instead of its immediate parents. This latter subject will be fully discussed in the following chapter.

       CHAPTER XIII.

      INHERITANCE continued– REVERSION OR ATAVISM

      DIFFERENT FORMS OF REVERSION – IN PURE OR UNCROSSED BREEDS, AS IN PIGEONS, FOWLS, HORNLESS CATTLE AND SHEEP, IN CULTIVATED PLANTS – REVERSION IN FERAL ANIMALS AND PLANTS – REVERSION IN CROSSED VARIETIES AND SPECIES – REVERSION THROUGH BUD-PROPAGATION, AND BY SEGMENTS IN THE SAME FLOWER OR FRUIT – IN DIFFERENT PARTS OF THE BODY IN THE SAME ANIMAL – THE ACT OF CROSSING A DIRECT CAUSE OF REVERSION, VARIOUS CASES OF, WITH INSTINCTS – OTHER PROXIMATE CAUSES OF REVERSION – LATENT CHARACTERS – SECONDARY SEXUAL CHARACTERS – UNEQUAL DEVELOPMENT OF THE TWO SIDES OF THE BODY – APPEARANCE WITH ADVANCING AGE OF CHARACTERS DERIVED FROM A CROSS – THE GERM WITH ALL ITS LATENT CHARACTERS A WONDERFUL OBJECT – MONSTROSITIES – PELORIC FLOWERS DUE IN SOME CASES TO REVERSION.

      The great principle of inheritance to be discussed in this chapter has been recognised by agriculturists and authors of various nations, as shown by the scientific term Atavism, derived from atavus, an ancestor; by the English terms of Reversion, or Throwing back; by the French Pas-en-arrière; and by the German Rück-schlag, or Rück-schritt. When the child resembles either grandparent more closely than its immediate parents, our attention is not much arrested, though in truth the fact is highly remarkable; but when the child resembles some remote ancestor, or some distant member in a collateral line, – and we must attribute the latter case to the descent of all the members from a common progenitor, –


Скачать книгу

<p>63</p>

'Proc. Royal Soc.,' vol. x. p. 297.

<p>64</p>

Mr. Sproule, in 'British Medical Journal,' April 18, 1863.

<p>65</p>

Downing, 'Fruits of America,' p. 5; Sageret, 'Pom. Phys.,' pp. 43, 72.