Studies in the Theory of Descent, Volume I. Weismann August

Studies in the Theory of Descent, Volume I - Weismann August


Скачать книгу
in the following summer, were now able to appear on the wing as butterflies during the same summer as that in which they left their eggs as larvæ, and eggs deposited by the last brood produced larvæ which fed up and hibernated as pupæ. A state of things was thus established in which the first brood was developed under very different climatic conditions from the second. So considerable a difference in colour and marking between the two forms as we now witness could not have arisen suddenly, but must have done so gradually. It is evident from the foregoing experiments that the Prorsa form did not originate suddenly. Had this been the case it would simply signify that every individual of this species possessed the faculty of assuming two different forms according as it was acted on by warmth or cold, just in the same manner as litmus-paper becomes red in acids and blue in alkalies. The experiments have shown, however, that this is not the case, but rather that the last generation bears an ineradicable tendency to take the Levana form, and is not susceptible to the influence of warmth, however long continued; while both summer generations, on the contrary, show a decided tendency to assume the Prorsa form, although they certainly can be made to assume the Levana form in different degrees by the prolonged action of cold.

      The conclusion seems to me inevitable, that the origination of the Prorsa form was gradual – that those changes which originated in the chemistry of the pupal stage, and led finally to the Prorsa type, occurred very gradually, at first perhaps remaining completely latent throughout a series of generations, then very slight changes of marking appearing, and finally, after a long period of time, the complete Prorsa type was produced. It appears to me that the quoted results of the experiments are not only easily explained on the view of the gradual action of climate, but that this view is the only one admissible. The action of climate is best comparable with the so-called cumulative effect of certain drugs on the human body; the first small dose produces scarcely any perceptible change, but if often repeated the effect becomes cumulative, and poisoning occurs.

      This view of the action of climate is not at all new, most zoologists having thus represented it; only the formal proof of this action is new, and the facts investigated appear to me of special importance as furnishing this proof. I shall again return to this view in considering climatic varieties, and it will then appear that also the nature of the transformation itself confirms the slow operation of climate.

      During the transition from the glacial period to the present climate A. Levana thus gradually changed from a monogoneutic to a digoneutic species, and at the same time became gradually more distinctly dimorphic, this character originating only through the alteration of the summer brood, the primary colouring and marking of the species being retained unchanged by the winter brood. As the summer became longer a third generation could be interpolated – the species became polygoneutic; and in this manner two summer generations alternated with one winter generation.

      We have now to inquire whether facts are in complete accordance with this theory – whether they are never at variance with it – and whether they can all be explained by it. I will at once state in anticipation, that this is the case to the fullest extent.

      In the first place, the theory readily explains why the summer but not the winter generations are capable of being transformed; the latter cannot possibly revert to the Prorsa form, because this is much the younger. When, however, it happens that out of a hundred cases there occurs one in which a chrysalis of the winter generation, having been forced by warmth, undergoes transformation before the commencement of winter, and emerges in the summer form,18 this is not in the least inexplicable. It cannot be atavism which determines the direction of the development; but we see from such a case that the changes in the first two generations have already produced a certain alteration in the third, which manifests itself in single cases under favourable conditions (the influence of warmth) by the assumption of the Prorsa form; or, as it might be otherwise expressed, the alternating heredity (of which we shall speak further), which implies the power of assuming the Prorsa form, remains latent as a rule in the winter generation, but becomes continuous in single individuals.

      It is true that we have as yet no kind of insight into the nature of heredity, and this at once shows the defectiveness of the foregoing explanation; but we nevertheless know many of its external phenomena. We know for certain that one of these consists in the fact that peculiarities of the father do not appear in the son, but in the grandson, or still further on, and that they may be thus transmitted in a latent form. Let us imagine a character so transmitted that it appears in the first, third, and fifth generations, remaining latent in the intermediate ones; it would not be improbable, according to previous experiences, that the peculiarity should exceptionally, i.e., from a cause unknown to us, appear in single individuals of the second or fourth generation. But this completely agrees with those cases in which “exceptional” individuals of the winter brood took the Prorsa form, with the difference only that a cause (warmth) was here apparent which occasioned the development of the latent characters, although we are not in a position to say in what manner heat produces this action. These exceptions to the rule are therefore no objection to the theory. On the contrary, they give us a hint that after one Prorsa generation had been produced, the gradual interpolation of a second Prorsa generation may have been facilitated by the existence of the first. I do not doubt that even in the natural state single individuals of Prorsa sometimes emerge in September or October; and if our summer were lengthened by only one or two months this might give rise to a third summer brood (just as a second is now an accomplished fact), under which circumstances they would not only emerge, but would also have time for copulation and for depositing eggs, the larvæ from which would have time to grow up.

      A sharp distinction must be made between the first establishment of a new climatic form and the transference of the latter to newly interpolated generations. The former always takes place very slowly; the latter may occur in a shorter time.

      With regard to the duration of time which is necessary to produce a new form by the influence of climate, or to transmit to a succeeding generation a new form already established, great differences occur, according to the physical nature of the species and of the individual. The experiments with Prorsa already described show how diverse are individual proclivities in this respect. In Experiment No. 12 it was not possible out of seventy individuals to substitute Prorsa for the Levana form, even in one solitary case, or, in other words, to change alternating into continuous inheritance; whilst in the corresponding experiments of former years (Experiment 10, for example), out of an equal number of pupæ three emerged as Prorsa, and one as Porima. We might be inclined to seek for the cause of this different behaviour in external influences, but we should not thus arrive at an explanation of the facts. We might suppose, for instance, that a great deal depended upon the particular period of the pupal stage at which the action of the elevated temperature began – whether on the first, the thirtieth, or the hundredth day after pupation – and this conjecture is correct in so far that in the two last cases warmth can have no further influence than that of somewhat accelerating the emergence of the butterflies, but cannot change the Levana into the Prorsa form. I have repeatedly exposed a large number of Levana pupæ of the third generation to the temperature of an apartment, or even still higher (26° R.), during winter, but no Prorsa were obtained.19

      But it would be erroneous to assume a difference in the action of heat according as it began on the first or third day after transformation; whether during or before pupation. This is best proved by Experiment No. 12, in which caterpillars of the fourth generation were placed in the hothouse several days before they underwent pupation; still, not a single butterfly assumed the Prorsa form. I have also frequently made the reverse experiment, and exposed caterpillars of the first summer brood to cold during the act of pupation. A regular consequence was the dying off of the caterpillars, which is little to be wondered at, as the sensitiveness of insects during ecdysis is well known, and transformation into the pupal state is attended by much deeper changes.

      Dorfmeister thought that he might conclude from his experiments that temperature exerts the greatest influence in the first place during the act of pupation, and in the next place immediately after that period. His experiments were made, however, with such a small number of specimens that


Скачать книгу

<p>18</p>

See Exp. 10, Appendix I.

<p>19</p>

When Dorfmeister remarks that hibernating pupæ which, at an early stage “were taken for development into a room, or not exposed to any cold, gave dwarfed, weakly and crippled,” or otherwise damaged butterflies, this is entirely attributable to the fact that this able entomologist had neglected to supply the necessary moisture to the warm air. By keeping pupæ over water I have always obtained very fine butterflies.