Studies in the Theory of Descent, Volume II. Weismann August
continues to feed, cannot, and as a matter of fact does not, ever wander far from its food-plant. A habit of concealment by burying in the earth also, such for example as occurs in Acherontia Atropos, could not be acquired by D. Euphorbiæ, because its food-plant generally grows on hard, dry, and stony ground.
In addition to these considerations, the foes would be different according as the caterpillar lived on plants which formed dense thickets covering large extents of the shore (Hippophae) or grew isolated on dry hillocks and declivities where the herbage was scanty or altogether absent; or again, according as the insect, in conjunction with such local differences, fed by day or had acquired the habit of feeding only by night. It must in fact be admitted that new and improved adaptations, or, in more general terms, that inducements to change, when depending on the environment, must be more frequently dissimilar for larvæ than for the imagines. We must accordingly expect to find actual change, or that condition of variability which may be regarded as initiative to change, occurring more commonly in larvæ than in perfect insects.
Since facts are in complete accordance with the results of these à priori considerations we may also venture to conclude that the basis of the considerations is likewise correct, viz., the supposition that the changes of colour and marking in caterpillars, pupæ, and imagines result from external influences only.
This must not be taken as signifying that the single stages of the larval development are also only able to change through the action of external influences. The larval stages are correlated with each other, as has already been shown (see the previous essay): new characters arise in the adult caterpillar at the last stage and are then gradually transferred back to the younger stages quite independently of external influences, this recession being entirely brought about by the laws of correlation. Natural selection here only exerts a secondary action, since it can accelerate or retard this transference, according as the new characters are advantageous or disadvantageous to the younger stages.
Now as considerable individual differences appear in the first acquisition of a new character with respect to the rapidity and completeness with which the individuals acquire such a character, the same must obtain for the transference of an improvement acquired in the last stage to the next younger stage. The new character would be acquired by different individuals in different degrees and at different rates – it would have, to a certain extent, to struggle with the older characters of the stage; in brief, the younger stage would become variable.
Variability of this kind might well be designated as secondary, in contradistinction to primary variability; the latter (primary) depends upon an unequal reaction of the individual organisms to external influences, the former (secondary) results from the unequal strength and rate of the action of the innate laws of growth governing the organism. In both cases alike exceeding variability may occur, but the causes producing this variability are dissimilar.
The different stages of larval development would thus frequently display independent variability in a manner similar to the pupal or imaginal stages, since they can show individual variability while the other stages of development remain constant. This appearance of independent variability in the different stages of the larval development, however, is in truth deceptive – we have here in fact a kind of wave of variability, which passes downwards through the developmental stages, becoming gradually weaker, and finally dying out completely.
In accordance with this, we very frequently find that only the last or two last stages are variable, while the younger stages are constant. Thus in Macroglossa Stellatarum, the larvæ are constant in the first, second, and third stages, but become variable in the fourth, and in the fifth stage first show that high degree of variability which has already been described in detail (See. Pl. III., Figs. 3–12). The larvæ, of Vanessa Cardui also, according to my notes, are extremely constant in the first four stages in spite of their complicated marking, but become variable in the fifth stage, although to no very great extent.
In Smerinthus Tiliæ, Ocellatus and Populi also, the greatest larval variability is shown only in the last stage, the preceding stages being very constant. These cases by no means depend upon the marking of the young stages being simpler and therefore being less capable of varying. The reverse case also occurs. In a somewhat similar manner as the young of the tapir and wild hog are striped, while the adult animals are plainly coloured, the young caterpillars of Saturnia Yamamai possess longitudinal black lines on a yellow ground, while as early as in the second stage a simple green colour appears in the place of this complicated but perfectly constant marking. If the young stages are so frequently constant, this rather depends upon the fact that the transference of a new character to these stages not only takes place gradually, but also with continually diminishing energy, in a manner somewhat similar to physical motion, which continually diminishes in speed by the action of resistance till it is completely arrested. This constancy of the younger stages may further be due to the circumstance that the characters would only be transferred when they had become fixed in the last stage, and were consequently no longer variable. The transferred characters may thus have acquired a greater regularity, i. e. a less degree of variability, than they possessed at their first origination. Extensive investigations in this special direction must be made if the precise laws, in accordance with which the backward transference of new characters takes place, are to be discovered. By such researches only should we arrive with certainty at the causes which determine the lesser variability of the young larval stages.
It may also occur that the early stages are variable, whilst the later stages are constant, although this case appears to happen less frequently. Thus, the caterpillars of Gastropacha Quercifolia vary considerably in the second stage but are constant at a later period, and the same is the case with Spilosoma Urticæ, which in the second stage may be almost considered to be dimorphic, but which subsequently becomes constant.
Cases in which the first stage is variable appear to be of the least frequent occurrence. I know of only one such instance, viz., Anceryx Pinastri, of which the newly hatched larvæ (Pl. VI., Fig. 53) show considerable differences in the brownish-black crescentic spots. The second (Fig. 54), third, and fourth stages are then tolerably constant, while the fifth stage again is very variable.
An instance of this kind can be easily explained by two waves of variation, the first of which now affects only the first stage, while the second has just commenced to affect the fifth stage. Such a supposition is not opposed to any theoretical considerations, but rather has much probability in its favour, since we know that species are from time to time subject to be remodelled; and further, that the coalescence of several stages of phyletic development in the ontogeny of one and the same species (see p. 226, development of the genus Deilephila) shows that during the backward transference of one character, new characters may appear in the last stage of the ontogeny, and indeed very frequently at a time when the next youngest character has not been transferred back so far as to the first stage.
That this secondary variability is to a certain extent brought about by the conflict between the old and new characters, the latter striving to suppress the former, is shown by the caterpillar of Saturnia Carpini which I have observed for many years from this point of view, and than which I do not know a more beautiful illustration.
When these larvæ leave the egg they are black, but in the adult state are almost bright green – this at least being the case in a local form which, from the district in the vicinity of Genoa where it is found, I will designate as the var. Ligurica. Now whilst these two extreme stages of development are relatively constant, the intermediate stages show a variability which becomes greater the nearer the last stage is approached, this variation in the marking depending simply on the struggle between the green colour and the more anciently inherited black. In this manner there arises, especially in the fourth stage of the German local form, an incredible mixture of the most diverse markings, all of which can, however, be very easily explained from the foregoing point of view.
The simpler and, as I am inclined to believe, the older form of the transformation is presented to us in the local variety Ligurica. In the last stage, when 7.5 centimeters long, this form is of a beautiful