Insectivorous Plants. Darwin Charles
So it was with the seventh tentacle, but its movement did not begin until 3 hrs. 45 m. had elapsed. The remaining six tentacles never moved as long as they were observed; and the particles apparently never came into contact with the surfaces of the glands.
From these experiments we learn that particles not containing soluble matter, when placed on glands, often cause the tentacles to begin bending in the course of from one to five minutes; and that in such cases the particles have been from the first in contact with the surfaces of the glands. When the tentacles do not begin moving for a much longer time, namely, from half an hour to three or four hours, the particles have been slowly brought into contact with the glands, either by the secretion being absorbed by the particles or by its gradual spreading over them, together with its consequent quicker evaporation. When the tentacles do not move at all, the particles have never come into contact with the glands, or in some cases the tentacles may not have been in an active condition. In order to excite movement, it is indispensable that the particles should actually rest on the glands; for a touch once, twice, or even thrice repeated by any hard body is not sufficient to excite movement.
Another experiment, showing that extremely minute particles act on the glands when immersed in water, may here be given. A grain of sulphate of quinine was added to an ounce of water, which was not afterwards filtered; and on placing three leaves in ninety minims of this fluid, I was much surprised to find that all three leaves were greatly inflected in 15 m.; for I knew from previous trials that the solution does not act so quickly as this. It immediately occurred to me that the particles of the undissolved salt, which were so light as to float about, might have come into contact with the glands, and caused this rapid movement. Accordingly I added to some distilled water a pinch of a quite innocent substance, namely, precipitated carbonate of lime, which consists of an impalpable powder; I shook the mixture, and thus got a fluid like thin milk. Two leaves were immersed in it, and in 6 m. almost every tentacle was much inflected. I placed one of these leaves under the microscope, and saw innumerable atoms of lime adhering to the external surface of the secretion. Some, however, had penetrated it, and were lying on the surfaces of the glands; and no doubt it was these particles which caused the tentacles to bend. When a leaf is immersed in water, the secretion instantly swells much; and I presume that it is ruptured here and there, so that little eddies of water rush in. If so, we can understand how the atoms of chalk, which rested on the surfaces of the glands, had penetrated the secretion. Anyone who has rubbed precipitated chalk between his fingers will have perceived how excessively fine the powder is. No doubt there must be a limit, beyond which a particle would be too small to act on a gland; but what this limit is, I know not. I have often seen fibres and dust, which had fallen from the air, on the glands of plants kept in my room, and these never induced any movement; but then such particles lay on the surface of the secretion and never reached the gland itself.
Finally, it is an extraordinary fact that a little bit of soft thread, 1/50 of an inch in length and weighing 1/8197 of a grain, or of a human hair, 8/1000 of an inch in length and weighing only 1/78740 of a grain (.000822 milligramme), or particles of precipitated chalk, after resting for a short time on a gland, should induce some change in its cells, exciting them to transmit a motor impulse throughout the whole length of the pedicel, consisting of about twenty cells, to near its base, causing this part to bend, and the tentacle to sweep through an angle of above 180o. That the contents of the cells of the glands, and afterwards those of the pedicels, are affected in a plainly visible manner by the pressure of minute particles, we shall have abundant evidence when we treat of the aggregation of protoplasm. But the case is much more remarkable than as yet stated; for the particles are supported by the viscid and dense secretion; nevertheless, even smaller ones than those of which the measurements have been given, when brought by an insensibly slow movement, through the means above specified, into contact with the surface of a gland, act on it, and the tentacle bends. The pressure exerted by the particle of hair, weighing only 1/78740 of a grain and supported by a dense fluid, must have been inconceivably slight. We may conjecture that it could hardly have equalled the millionth of a grain; and we shall hereafter see that far less than the millionth of a grain of phosphate of ammonia in solution, when absorbed by a gland, acts on it and induces movement. A bit of hair, 1/50 of an inch in length, and therefore much larger than those used in the above experiments, was not perceived when placed on my tongue; and it is extremely doubtful whether any nerve in the human body, even if in an inflamed condition, would be in any way affected by such a particle supported in a dense fluid, and slowly brought into contact with the nerve. Yet the cells of the glands of Drosera are thus excited to transmit a motor impulse to a distant point, inducing movement. It appears to me that hardly any more remarkable fact than this has been observed in the vegetable kingdom.
The Inflection of the Exterior Tentacles, when their Glands are excited by Repeated Touches.
We have already seen that, if the central glands are excited by being gently brushed, they transmit a motor impulse to the exterior tentacles, causing them to bend; and we have now to consider the effects which follow from the glands of the exterior tentacles being themselves touched. On several occasions, a large number of glands were touched only once with a needle or fine brush, hard enough to bend the whole flexible tentacle; and though this must have caused a thousand-fold greater pressure than the weight of the above described particles, not a tentacle moved. On another occasion forty-five glands on eleven leaves were touched once, twice, or even thrice, with a needle or stiff bristle. This was done as quickly as possible, but with force sufficient to bend the tentacles; yet only six of them became inflected, – three plainly, and three in a slight degree. In order to ascertain whether these tentacles which were not affected were in an efficient state, bits of meat were placed on ten of them, and they all soon became greatly incurved. On the other hand, when a large number of glands were struck four, five, or six times with the same force as before, a needle or sharp splinter of glass being used, a much larger proportion of tentacles became inflected; but the result was so uncertain as to seem capricious. For instance, I struck in the above manner three glands, which happened to be extremely sensitive, and all three were inflected almost as quickly, as if bits of meat had been placed on them. On another occasion I gave a single for- cible touch to a considerable number of glands, and not one moved; but these same glands, after an interval of some hours, being touched four or five times with a needle, several of the tentacles soon became inflected.
The fact of a single touch or even of two or three touches not causing inflection must be of some service to the plant; as during stormy weather, the glands cannot fail to be occasionally touched by the tall blades of grass, or by other plants growing near; and it would be a great evil if the tentacles were thus brought into action, for the act of re-expansion takes a considerable time, and until the tentacles are re-expanded they cannot catch prey. On the other hand, extreme sensitiveness to slight pressure is of the highest service to the plant; for, as we have seen, if the delicate feet of a minute struggling insect press ever so lightly on the surfaces of two or three glands, the tentacles bearing these glands soon curl inwards and carry the insect with them to the centre, causing, after a time, all the circumferential tentacles to embrace it. Nevertheless, the movements of the plant are not perfectly adapted to its requirements; for if a bit of dry moss, peat, or other rubbish, is blown on to the disc, as often happens, the tentacles clasp it in a useless manner. They soon, however, discover their mistake and release such innutritious objects.
It is also a remarkable fact, that drops of water falling from a height, whether under the form of natural or artificial rain, do not cause the tentacles to move; yet the drops must strike the glands with considerable force, more especially after the secretion has been all washed away by heavy rain; and this often occurs, though the secretion is so viscid that it can be removed with difficulty merely by waving the leaves in water. If the falling drops of water are small, they adhere to the secretion, the weight of which must be increased in a much greater degree, as before remarked, than by the addition of minute particles of solid matter; yet the drops never cause the tentacles to become inflected. It would obviously have been a great evil to the plant (as in the case of occasional touches) if the tentacles were excited to bend by every shower of rain; but this evil has been avoided by the glands either having become through habit insensible to the blows and prolonged pressure of drops of water, or to their having been originally rendered sensitive solely to the contact of solid bodies. We shall hereafter see that the filaments on the leaves of Dionaea are likewise insensible