Стратегические игры. Доступный учебник по теории игр. Авинаш Диксит

Стратегические игры. Доступный учебник по теории игр - Авинаш Диксит


Скачать книгу
тому или иному вопросу, может дать соперникам четкую цель для контрагитации, а значит, в такой игре мы наблюдаем преимущество второго хода.

      Умение учитывать все эти факторы и достигать их оптимального соотношения может помочь вам разработать способы манипулировать порядком ходов в свою пользу. Это, в свою очередь, приводит к изучению таких стратегических шагов, как угрозы и обещания, которые мы будем рассматривать в главе 9.

Б. У игроков есть общие интересы или они полностью противоречат друг другу?

      В простых играх, таких как шахматы или футбол, есть победитель и побежденный. Победа одного игрока означает поражение другого. Точно так же в азартных играх выигрыш одного игрока означает проигрыш другого, то есть общий итог равен 0. Именно поэтому эти ситуации называют играми с нулевой суммой. Общая идея состоит в том, что в подобных играх интересы игроков полностью противоречат друг другу[12]. Такой конфликт интересов возникает в случаях, когда игроки делят между собой фиксированную сумму возможного выигрыша, в каких бы единицах он ни измерялся – в ярдах, долларах, акрах или шариках мороженого. Поскольку общий итог не всегда равен 0, термин «игра с нулевой суммой» часто заменяется термином «игра с постоянной суммой». Мы будем использовать эти термины как синонимы.

      Большинство экономических и социальных игр не относятся к категории игр с нулевой суммой. Торговля или экономическая деятельность в более общем смысле предлагает широкие возможности для сделок, приносящих пользу всем. Совместные предприятия могут использовать совокупность навыков отдельных участников, тем самым создавая синергию, позволяющую выпускать больше продукции, чем они могли бы произвести по отдельности. Однако в этих случаях интересы партнеров не всегда совпадают: партнеры могут сотрудничать, чтобы создать больший общий «пирог», но начнут конфликтовать, когда дело дойдет до его дележа.

      Даже войны и забастовки не относятся к числу игр с нулевой суммой. Ядерная война – самый яркий пример ситуации, в которой могут быть только проигравшие, однако на самом деле концепция игр с нулевой суммой появилась гораздо раньше. В 280 году до н. э. царь Эпира Пирр, одержав победу над римлянами у Гераклеи слишком дорогой ценой для своей армии, воскликнул: «Еще одна такая победа – и мы погибнем!» Отсюда и выражение «пиррова победа». В 1980-х годах, в разгар ажиотажа вокруг поглощения компаний, битвы между конкурирующими покупателями приводили к настолько разорительному повышению цен, что победа одного из покупателей зачастую напоминала пиррову.

      В действительности большинству игр присуще противоречие между конфликтом и партнерством, и многие из самых интересных примеров анализа в теории игр связаны с необходимостью его устранения. Игроки пытаются разрешить конфликт (разделить территорию или прибыль) исходя из знания о том, что, если им не удастся договориться, результат окажется неблагоприятным для всех участников игры. При этом угроза одной из сторон начать войну или забастовку


Скачать книгу