The Principles of Biology, Volume 1 (of 2). Spencer Herbert
Observe what it is that ceases when life ceases. In a dead body there are going on heterogeneous changes, both simultaneous and successive. What then has disappeared? The definite combination has disappeared. Mark, too, that however heterogeneous the simultaneous and successive changes exhibited by such an inorganic object as a volcano, we much less tend to think of it as living than we do a watch or a steam-engine, which, though displaying changes that, serially contemplated, are largely homogeneous, displays them definitely combined. So dominant an element is this in our idea of Life, that even when an object is motionless, yet, if its parts be definitely combined, we conclude either that it has had life, or has been made by something having life. Thus, then, we conclude that Life is —the definite combination of heterogeneous changes, both simultaneous and successive.
§ 26. Such is the conception at which we arrive without changing our stand-point. It is, however, an incomplete conception. This ultimate formula (which is to a considerable extent identical with one above given – "the co-ordination of actions;" seeing that "definite combination" is synonymous with "co-ordination," and "changes both simultaneous and successive" are comprehended under the term "actions;" but which differs from it in specifying the fact, that the actions or changes are "heterogeneous") – this ultimate formula, I say, is after all but a rude approximation. It is true that it does not fail by including the growth of a crystal; for the successive changes this implies cannot be called heterogeneous. It is true that the action of a galvanic battery is not comprised in it; since here, too, heterogeneity is not exhibited by the successive changes. It is true that by this same qualification the motions of the Solar System are excluded, as are also those of a watch and a steam-engine. It is true, moreover, that while, in virtue of their heterogeneity, the actions going on in a cloud, in a volcano, in a glacier, fulfil the definition; they fall short of it in lacking definiteness of combination. It is further true that this definiteness of combination distinguishes the changes taking place in an organism during life from those which commence at death. And beyond all this it is true that, as well as serving to mark off, more or less clearly, organic actions from inorganic actions, each member of the definition serves to mark off the actions constituting high vitality from those constituting low vitality; seeing that life is high in proportion to the number of successive changes occurring between birth and death; in proportion to the number of simultaneous changes; in proportion to the heterogeneity of the changes; in proportion to the combination subsisting among the changes; and in proportion to the definiteness of their combination. Nevertheless, answering though it does to so many requirements, this definition is essentially defective. The definite combination of heterogeneous changes, both simultaneous and successive, is a formula which fails to call up an adequate conception. And it fails from omitting the most distinctive peculiarity – the peculiarity of which we have the most familiar experience, and with which our notion of Life is, more than with any other, associated. It remains now to supplement the conception by the addition of this peculiarity.
CHAPTER V.
THE CORRESPONDENCE BETWEEN LIFE AND ITS CIRCUMSTANCES
§ 27. We habitually distinguish between a live object and a dead one, by observing whether a change which we make in the surrounding conditions, or one which Nature makes in them, is or is not followed by some perceptible change in the object. By discovering that certain things shrink when touched, or fly away when approached, or start when a noise is made, the child first roughly discriminates between the living and the not-living; and the man when in doubt whether an animal he is looking at is dead or not, stirs it with his stick; or if it be at a distance, shouts, or throws a stone at it. Vegetal and animal life are alike primarily recognized by this process. The tree that puts out leaves when the spring brings increase of temperature, the flower which opens and closes with the rising and setting of the sun, the plant that droops when the soil is dry and re-erects itself when watered, are considered alive because of these induced changes; in common with the acorn-shell which contracts when a shadow suddenly falls on it, the worm that comes to the surface when the ground is continuously shaken, and the hedgehog that rolls itself up when attacked.
Not only, however, do we look for some response when an external stimulus is applied to a living organism, but we expect a fitness in the response. Dead as well as living things display changes under certain changes of condition: instance, a lump of carbonate of soda that effervesces when dropped into sulphuric acid; a cord that contracts when wetted; a piece of bread that turns brown when held near the fire. But in these cases, we do not see a connexion between the changes undergone and the preservation of the things that undergo them; or, to avoid any teleological implication – the changes have no apparent relations to future events which are sure or likely to take place. In vital changes, however, such relations are manifest. Light being necessary to vegetal life, we see in the action of a plant which, when much shaded, grows towards the unshaded side, an appropriateness which we should not see did it grow otherwise. Evidently the proceedings of a spider which rushes out when its web is gently shaken and stays within when the shaking is violent, conduce better to the obtainment of food and the avoidance of danger than were they reversed. The fact that we feel surprise when, as in the case of a bird fascinated by a snake, the conduct tends towards self-destruction, at once shows how generally we have observed an adaptation of living changes to changes in surrounding circumstances.
A kindred truth, rendered so familiar by infinite repetition that we forget its significance, must be named. There is invariably, and necessarily, a conformity between the vital functions of any organism and the conditions in which it is placed – between the processes going on inside of it and the processes going on outside of it. We know that a fish cannot live long in air, or a man under water. An oak growing in the ocean and a seaweed on the top of a hill, are incredible combinations of ideas. We find that each kind of animal is limited to a certain range of climate; each kind of plant to certain zones of latitude and elevation. Of the marine flora and fauna, each species is found only between such and such depths. Some blind creatures flourish in dark caves; the limpet where it is alternately covered and uncovered by the tide; the red-snow alga rarely elsewhere than in the arctic regions or among alpine peaks.
Grouping together the cases first named, in which a particular change in the circumstances of an organism is followed by a particular change in it, and the cases last named, in which the constant actions occurring within an organism imply some constant actions occurring without it; we see that in both, the changes or processes displayed by a living body are specially related to the changes or processes in its environment. And here we have the needful supplement to our conception of Life. Adding this all-important characteristic, our conception of Life becomes – The definite combination of heterogeneous changes, both simultaneous and successive, in correspondence with external co-existences and sequences. That the full significance of this addition may be seen, it will be necessary to glance at the correspondence under some of its leading aspects.17
§ 28. Neglecting minor requirements, the actions going on in a plant pre-suppose a surrounding medium containing at least carbonic acid and water, together with a due supply of light and a certain temperature. Within the leaves carbon is being appropriated and oxygen given off; without them, is the gas from which the carbon is taken, and the imponderable agents that aid the abstraction. Be the nature of the process what it may, it is clear that there are external elements prone to undergo special re-arrangements under special conditions. It is clear that the plant in sunshine presents these conditions and so effects these re-arrangements. And thus it is clear that the changes which primarily constitute the plant's life, are in correspondence with co-existences in its environment.
If, again, we ask respecting the lowest protozoon how it lives; the answer is, that while on the one hand its substance is undergoing disintegration, it is on the other hand absorbing nutriment; and that it may continue to exist, the one process must keep pace with, or exceed, the other. If further we ask under what circumstances these combined changes are possible, there is the reply that the medium in which the protozoon is placed, must contain oxygen and food – oxygen in such quantity as to produce some disintegration; food in such quantity as to permit that disintegration to be made good. In other words – the two antagonistic processes taking place internally, imply the presence externally of materials having affinities that can give rise to them.
Leaving those lowest animal forms which simply
17
Speaking of "the general idea of
[When the original edition was published Dr. J. H. Bridges wrote to me saying that in the