Fragments of Earth Lore: Sketches & Addresses Geological and Geographical. Geikie James
recur again and again all over the Lowlands. Wherever, indeed, any considerable bed of hard rock occurs in a series of less enduring strata – the outcrop of the harder rock invariably forms a well-marked feature or escarpment. As examples, I may refer to Salisbury Crags, Craiglockhart Hill, Dalmahoy Crags, the Bathgate Hills, King Alexander’s Crag, etc. All these are conspicuous examples of the work of denudation – for it can be demonstrated that each of these rock-masses was at one time deeply buried under sandstones and shales, and they now crop out at the surface, and form prominent features simply because the beds which formerly covered and surrounded them have been gradually removed.
From what has now been said it will be readily understood that in regions composed of strata the inclination or dip of which is not constant but continually changing in direction, the surface-features must be more or less irregular. If the strata dip east the outcrops of the harder beds will form escarpments facing the west, and the direction of the escarpments will obviously change with the direction of the dip. Undulating strata of variable composition will, in short, give rise to an undulating surface, but the superficial undulations will not coincide with those of the strata. On the contrary, in regions consisting of undulating strata of diverse consistency the hills generally correspond with synclinal troughs – or, in other words, trough-shaped strata tend to form hills; while, on the other hand, arch-shaped or anticlinal strata most usually give rise to hollows. This remarkable fact is one of the first to arrest the attention of every student of physical geology, and its explanation is simple enough. An anticlinal arrangement of strata is a weak structure – it readily succumbs to the attacks of the denuding agents; a synclinal arrangement on the contrary, is a strong structure, which is much less readily broken up. Hence it is that in all regions which have been exposed for prolonged periods to sub-aërial denudation synclinal strata naturally come to form hills, and anticlinal strata valleys or low grounds. In the case of a mountain-chain so recently elevated as that of the Alps, the mountain-ridges, as we have seen, often coincide roughly with the greater folds of the strata. Such anticlinal mountains are weakly built, and consequently rock-falls and landslips are of common occurrence among them – far more common, and on a much larger scale, than among the immeasurably older mountains of Scandinavia and Scotland. The valleys of the Pyrenees, the Alps, and the Apennines, are cumbered with enormous chaotic heaps of fallen rock-masses. From time to time peaks and whole mountain-sides give way, and slide into the valleys, burying hamlets and villages, and covering wide tracts of cultivated land. Hundreds of such disastrous rock-falls have occurred in the Alps within historical ages, and must continue to take place until every weakly-formed mountain has been demolished. The hills and mountains of Scotland have long since passed through this phase of unstable equilibrium. After countless ages of erosion our higher grounds have acquired a configuration essentially different from that of a true mountain-chain. Enormous landslips like that of the Rossberg are here impossible, for all such weakly-constructed mountains have disappeared.
A little consideration will serve to show how such modifications and changes have come about. When strata are crumpled up they naturally crack across, for they are not elastic. During the great movements which have originated all mountains of elevation, it is evident that the strata forming the actual surface of the ground would often be greatly fissured and shattered along the crests of the sharper anticlinal ridges. In the synclinal troughs, however, although much fissuring would take place, yet the strata would be compelled by the pressure to keep together. Now, when we study the structure of such a region as the Alps, we find that the tops of the anticlines have almost invariably been removed, so as to expose the truncated ends of the strata – the ruptured and shattered rock-masses having in the course of time been carried away by the agents of erosion. Such mountains are pre-eminently weak structures. Let us suppose that the mountains represented in the diagram consist of a succession of strata, some of which are more or less permeable by water, while others are practically impermeable. It is obvious that water soaking down from the surface will find its way through the porous strata (p), and come out on the slopes of the mountains along the joints and cracks (c) by which all strata are traversed. Under the influence of such springs and the action of frost, the rock at the surface will eventually be broken up, and ever and anon larger and smaller portions will slide downwards over the surface of the underlying impermeable stratum. The undermining action of rivers will greatly intensify this disintegrating and disrupting process. As the river deepens and widens its valley (v), it is apparent that in doing so it must truncate the strata that are inclined towards it. The beds will then crop out upon the slopes of the valley (as at b, b), and so the conditions most favourable for a landslip will arise. Underground water, percolating through the porous beds (p), and over the surface of the underlying impermeable beds (i, i, i), must eventually bring about a collapse. The rocks forming the surface-slopes of the mountain will from time to time give and slide into the valley, or the whole thickness of the truncated strata may break away and rush downwards; and this process must continue so long as any portion of the anticlinal arch remains above the level of the adjacent synclinal troughs.
Thus it will be seen that an anticlinal arch is a weak structure – a mountain so constructed falls a ready prey to the denuding agents; and hence in regions which have been exposed to denudation for as long a period as the Scottish or Scandinavian uplands, a mountain formed of anticlinally arranged strata is of very exceptional occurrence. When it does appear, it is only because the rocks of which it is composed happen to be of a more enduring character than those of the adjacent tracts. The Ochil Hills exemplify this point. These hills consist of a great series of hard igneous rocks, which are arranged in the form of a depressed anticlinal arch – the low grounds lying to the north and south being composed chiefly of sandstones and shales. Here it is owing to the more enduring character of the igneous rocks that the anticlinal arch has not been entirely removed. We know, however, that these igneous rocks were formerly buried under a great thickness of strata, and that their present appearance at the surface is simply the result of denudation.
If an anticlinal arch be a weak structure, a synclinal arrangement of strata is quite the opposite. In the case of the former each bed has a tendency to slip or slide away from the axis, while in a syncline it is just the reverse – the strata being inclined towards and not away from the axis. Underground water, springs, and frost are enabled to play havoc with anticlinal strata, for the structure is entirely in their favour. But in synclinal beds the action of these powerful agents is opposed by the structure of the rocks – and great rock-falls and landslips cannot take place. Synclinal strata therefore endure, while anticlinal strata are worn more readily away. Even in a true mountain-range so young as the Alps, denudation has already demolished many weakly-built anticlinal mountains, and opened up valleys along their axes; while, on the other hand, synclinal troughs have been converted into mountains. And if this be true of the Alps, it is still more so of much older mountain-regions, in which the original contours due to convolutions of the strata have entirely disappeared.
The mountains of such regions, having been carved out and modelled by denuding agents, are rightly termed mountains of circumdenudation, for they are just as much the work of erosion as the flat-topped and pyramidal mountains which have been carved out of horizontal strata. The Scottish Highlands afford us an admirable example of a mountainous region of undulating and often highly-flexed strata, in which the present surface-features are the result of long-continued erosion. As already remarked, this region is one of the oldest land-surfaces in the world. In comparison with it, the Pyrenees, the Alps, and the Himalayas are creations of yesterday. The original surface or configuration assumed by the rocks composing our Highland area at the time when these were first crushed and folded into anticlines and synclines had already been demolished at a period inconceivably more remote than the latest grand upheaval of the Alps. Even before the commencement of Old Red Sandstone times, our Archæan, Cambrian, and Silurian rocks had been planed down for thousands of feet, so that the bottom beds of the Old Red Sandstone were deposited upon a gently undulating surface, which cuts across anticlines and synclines alike. In late Silurian and early post-Silurian times the North-west Highlands probably existed as a true mountain-chain, consisting of a series of parallel ranges formed by the folding and reduplication of the strata. The recent observations of my friends, Professor Lapworth and Messrs. Peach and Horne, in Sutherland, have brought to light the evidence of gigantic earth-movements, by which enormous masses of strata have been convoluted and pushed for miles out of place. We see in that region