The Descent of Man, and Selection in Relation to Sex. Darwin Charles

The Descent of Man, and Selection in Relation to Sex - Darwin Charles


Скачать книгу
is infested with internal parasites, sometimes causing fatal effects; and is plagued by external parasites, all of which belong to the same genera or families as those infesting other mammals, and in the case of scabies to the same species. (8. Dr. W. Lauder Lindsay, 'Edinburgh Vet. Review,' July 1858, page 13.) Man is subject, like other mammals, birds, and even insects (9. With respect to insects see Dr. Laycock, "On a General Law of Vital Periodicity," 'British Association,' 1842. Dr. Macculloch, 'Silliman's North American Journal of Science,' vol. XVII. page 305, has seen a dog suffering from tertian ague. Hereafter I shall return to this subject.), to that mysterious law, which causes certain normal processes, such as gestation, as well as the maturation and duration of various diseases, to follow lunar periods. His wounds are repaired by the same process of healing; and the stumps left after the amputation of his limbs, especially during an early embryonic period, occasionally possess some power of regeneration, as in the lowest animals. (10. I have given the evidence on this head in my 'Variation of Animals and Plants under Domestication,' vol. ii. page 15, and more could be added.)

      The whole process of that most important function, the reproduction of the species, is strikingly the same in all mammals, from the first act of courtship by the male (11. Mares e diversis generibus Quadrumanorum sine dubio dignoscunt feminas humanas a maribus. Primum, credo, odoratu, postea aspectu. Mr. Youatt, qui diu in Hortis Zoologicis (Bestiariis) medicus animalium erat, vir in rebus observandis cautus et sagax, hoc mihi certissime probavit, et curatores ejusdem loci et alii e ministris confirmaverunt. Sir Andrew Smith et Brehm notabant idem in Cynocephalo. Illustrissimus Cuvier etiam narrat multa de hac re, qua ut opinor, nihil turpius potest indicari inter omnia hominibus et Quadrumanis communia. Narrat enim Cynocephalum quendam in furorem incidere aspectu feminarum aliquarem, sed nequaquam accendi tanto furore ab omnibus. Semper eligebat juniores, et dignoscebat in turba, et advocabat voce gestuque.), to the birth and nurturing of the young. Monkeys are born in almost as helpless a condition as our own infants; and in certain genera the young differ fully as much in appearance from the adults, as do our children from their full-grown parents. (12. This remark is made with respect to Cynocephalus and the anthropomorphous apes by Geoffroy Saint-Hilaire and F. Cuvier, 'Histoire Nat. des Mammifères,' tom. i. 1824.) It has been urged by some writers, as an important distinction, that with man the young arrive at maturity at a much later age than with any other animal: but if we look to the races of mankind which inhabit tropical countries the difference is not great, for the orang is believed not to be adult till the age of from ten to fifteen years. (13. Huxley, 'Man's Place in Nature,' 1863, p. 34.) Man differs from woman in size, bodily strength, hairiness, etc., as well as in mind, in the same manner as do the two sexes of many mammals. So that the correspondence in general structure, in the minute structure of the tissues, in chemical composition and in constitution, between man and the higher animals, especially the anthropomorphous apes, is extremely close.

EMBRYONIC DEVELOPMENT

      [Fig. 1. Shows a human embryo, from Ecker, and a dog embryo, from

      Bischoff. Labelled in each are:

      a. Fore-brain, cerebral hemispheres, etc. b. Mid-brain, corpora quadrigemina. c. Hind-brain, cerebellum, medulla oblongata. d. Eye. e. Ear. f. First visceral arch. g. Second visceral arch. H. Vertebral columns and muscles in process of development. i. Anterior extremities. K. Posterior extremities. L. Tail or os coccyx.]

      Man is developed from an ovule, about the 125th of an inch in diameter, which differs in no respect from the ovules of other animals. The embryo itself at a very early period can hardly be distinguished from that of other members of the vertebrate kingdom. At this period the arteries run in arch-like branches, as if to carry the blood to branchiae which are not present in the higher Vertebrata, though the slits on the sides of the neck still remain (see f, g, fig. 1), marking their former position. At a somewhat later period, when the extremities are developed, "the feet of lizards and mammals," as the illustrious Von Baer remarks, "the wings and feet of birds, no less than the hands and feet of man, all arise from the same fundamental form." It is, says Prof. Huxley (14. 'Man's Place in Nature,' 1863, p. 67.), "quite in the later stages of development that the young human being presents marked differences from the young ape, while the latter departs as much from the dog in its developments, as the man does. Startling as this last assertion may appear to be, it is demonstrably true."

      As some of my readers may never have seen a drawing of an embryo, I have given one of man and another of a dog, at about the same early stage of development, carefully copied from two works of undoubted accuracy. (15. The human embryo (upper fig.) is from Ecker, 'Icones Phys.,' 1851-1859, tab. xxx. fig. 2. This embryo was ten lines in length, so that the drawing is much magnified. The embryo of the dog is from Bischoff, 'Entwicklungsgeschichte des Hunde-Eies,' 1845, tab. xi. fig. 42B. This drawing is five times magnified, the embryo being twenty-five days old. The internal viscera have been omitted, and the uterine appendages in both drawings removed. I was directed to these figures by Prof. Huxley, from whose work, 'Man's Place in Nature,' the idea of giving them was taken. Haeckel has also given analogous drawings in his 'Schopfungsgeschichte.')

      After the foregoing statements made by such high authorities, it would be superfluous on my part to give a number of borrowed details, shewing that the embryo of man closely resembles that of other mammals. It may, however, be added, that the human embryo likewise resembles certain low forms when adult in various points of structure. For instance, the heart at first exists as a simple pulsating vessel; the excreta are voided through a cloacal passage; and the os coccyx projects like a true tail, "extending considerably beyond the rudimentary legs." (16. Prof. Wyman in 'Proceedings of the American Academy of Sciences,' vol. iv. 1860, p. 17.) In the embryos of all air-breathing vertebrates, certain glands, called the corpora Wolffiana, correspond with, and act like the kidneys of mature fishes. (17. Owen, 'Anatomy of Vertebrates,' vol. i. p. 533.) Even at a later embryonic period, some striking resemblances between man and the lower animals may be observed. Bischoff says that "the convolutions of the brain in a human foetus at the end of the seventh month reach about the same stage of development as in a baboon when adult." (18. 'Die Grosshirnwindungen des Menschen,' 1868, s. 95.) The great toe, as Professor Owen remarks (19. 'Anatomy of Vertebrates,' vol. ii. p. 553.), "which forms the fulcrum when standing or walking, is perhaps the most characteristic peculiarity in the human structure;" but in an embryo, about an inch in length, Prof. Wyman (20. 'Proc. Soc. Nat. Hist.' Boston, 1863, vol. ix. p. 185.) found "that the great toe was shorter than the others; and, instead of being parallel to them, projected at an angle from the side of the foot, thus corresponding with the permanent condition of this part in the quadrumana." I will conclude with a quotation from Huxley (21. 'Man's Place in Nature,' p. 65.) who after asking, does man originate in a different way from a dog, bird, frog or fish? says, "the reply is not doubtful for a moment; without question, the mode of origin, and the early stages of the development of man, are identical with those of the animals immediately below him in the scale: without a doubt in these respects, he is far nearer to apes than the apes are to the dog."

RUDIMENTS

      This subject, though not intrinsically more important than the two last, will for several reasons be treated here more fully. (22. I had written a rough copy of this chapter before reading a valuable paper, "Caratteri rudimentali in ordine all' origine dell' uomo" ('Annuario della Soc. d. Naturalisti,' Modena, 1867, p. 81), by G. Canestrini, to which paper I am considerably indebted. Haeckel has given admirable discussions on this whole subject, under the title of Dysteleology, in his 'Generelle Morphologie' and 'Schöpfungsgeschichte.') Not one of the higher animals can be named which does not bear some part in a rudimentary condition; and man forms no exception to the rule. Rudimentary organs must be distinguished from those that are nascent; though in some cases the distinction is not easy. The former are either absolutely useless, such as the mammae of male quadrupeds, or the incisor teeth of ruminants which never cut through the gums; or they are of such slight service to their present possessors, that we can hardly suppose that they were developed under the conditions which now exist. Organs in this latter state are not strictly rudimentary, but they are tending in this direction. Nascent organs, on the other hand, though not fully developed, are of high service to their possessors, and are capable of further development. Rudimentary organs are eminently variable; and this is partly intelligible, as they are useless, or nearly useless, and consequently are no longer subjected to natural selection. They often become wholly suppressed. When this occurs, they are nevertheless liable to occasional reappearance through reversion


Скачать книгу