Essays: Scientific, Political, and Speculative, Volume II. Spencer Herbert
other, we have the naming of the days after the sun, moon, and planets; the early attempts among Eastern nations to regulate the calendar so that the gods might not be offended by the displacement of their sacrifices; and the fixing of the great annual festival of the Peruvians by the position of the sun. In all which facts we see that, at first, science was simply an appliance of religion and industry.
After the discoveries that a lunation occupies nearly thirty days, and that some twelve lunations occupy a year – discoveries which we may infer were the earliest, from the fact that existing uncivilized races have made them – we come to the first known astronomical records, which are those of eclipses. The Chaldeans were able to predict these. “This they did, probably,” says Dr. Whewell in his useful history, from which most of the materials we are about to use will be drawn, “by means of their cycle of 223 months, or about eighteen years; for, at the end of this time, the eclipses of the moon begin to return, at the same intervals and in the same order as at the beginning.” Now this method of calculating eclipses by means of a recurring cycle, – the Saros as they called it – is a more complex case of prevision by means of coincidence of measures. For by what observations must the Chaldeans have discovered this cycle? Obviously, as Delambre infers, by inspecting their registers; by comparing the successive intervals; by finding that some of the intervals were alike; by seeing that these equal intervals were eighteen years apart; by discovering that all the intervals that were eighteen years apart were equal; by ascertaining that the intervals formed a series which repeated itself, so that if one of the cycles of intervals were superposed on another the divisions would fit. And this being once perceived, it became possible to use the cycle as a scale of time by which to measure out future periods of recurrence. Seeing thus that the process of so predicting eclipses, is in essence the same as that of predicting the moon’s monthly changes by observing the number of days after which they repeat – seeing that the two differ only in the extent and irregularity of the intervals; it is not difficult to understand how such an amount of knowledge should so early have been reached. And we shall be the less surprised on remembering that the only things involved in these previsions were time and number; and that the time was in a manner self-numbered.
Still, the ability to predict events recurring only after so long a period as eighteen years, implies a considerable advance in civilization – a considerable development of general knowledge; and we have now to inquire what progress in other sciences accompanied, and was necessary to, these astronomical previsions. In the first place, there must have been a tolerably efficient system of calculation. Mere finger-counting, mere head-reckoning, even with the aid of a decimal notation, could not have sufficed for numbering the days in a year; much less the years, months, and days between eclipses. Consequently there must have been a mode of registering numbers; probably even a system of numerals. The earliest numerical records, if we may judge by the practices of the less civilized races now existing, were probably kept by notches cut on sticks, or strokes marked on walls; much as public-house scores are kept now. And there is reason to think that the first numerals used were simply groups of straight strokes, as some of the still-extant Roman ones are; leading us to suspect that these groups of strokes were used to represent groups of fingers, as the groups of fingers had been used to represent groups of objects – a supposition harmonizing with the aboriginal practice of picture writing. Be this so or not, however, it is manifest that before the Chaldeans discovered their Saros , they must have had both a set of written symbols serving for an extensive numeration, and a familiarity with the simpler rules of arithmetic.
Not only must abstract mathematics have made some progress, but concrete mathematics also. It is scarcely possible that the buildings belonging to this era should have been laid out and erected without any knowledge of geometry. At any rate, there must have existed that elementary geometry which deals with direct measurement – with the apposition of lines; and it seems that only after the discovery of those simple proceedings, by which right angles are drawn, and relative positions fixed, could so regular an architecture be executed. In the case of the other division of concrete mathematics – mechanics, we have definite evidence of progress. We know that the lever and the inclined plane were employed during this period: implying that there was a qualitative prevision of their effects, if not a quantitative one. But we know more. We read of weights in the earliest records; and we find weights in ruins of the highest antiquity. Weights imply scales, of which we have also mention; and scales involve the primary theorem of mechanics in its least complicated form – involve not a qualitative but a quantitative prevision of mechanical effects. And here we may notice how mechanics, in common with the other exact sciences, took its rise from the simplest application of the idea of equality. For the mechanical proposition which the scales involve, is, that if a lever with equal arms, have equal weights suspended from them, the weights will remain at equal altitudes. And we may further notice how, in this first step of rational mechanics, we see illustrated the truth awhile since named, that as magnitudes of linear extension are the only ones of which the equality is exactly ascertainable, the equalities of other magnitudes have at the outset to be determined by means of them. For the equality of the weights which balance each other in scales, depends on the equality of the arms: we can know that the weights are equal only by proving that the arms are equal. And when by this means we have obtained a system of weights, – a set of equal units of force and definite multiples of them, then does a science of mechanics become possible. Whence, indeed, it follows, that rational mechanics could not possibly have any other starting-point than the scales.
Let us further remember that during this same period there was some knowledge of chemistry. Sundry of the arts which we know to have been carried on, were made possible only by a generalized experience of the modes in which certain bodies affect each other under special conditions. In metallurgy, which was extensively practised, this is abundantly illustrated. And we even have evidence that in some cases the knowledge possessed was, in a sense, quantitative. For, as we find by analysis that the hard alloy of which the Egyptians made their cutting tools, was composed of copper and tin in fixed proportions, there must have been an established prevision that such an alloy was to be obtained only by mixing them in these proportions. It is true, this was but a simple empirical generalization; but so was the generalization respecting the recurrence of eclipses; so are the first generalizations of every science.
Respecting the simultaneous advance of the sciences during this early epoch, it remains to point out that even the most complex of them must have made some progress. For under what conditions only were the foregoing developments possible? The conditions furnished by an established and organized social system. A long continued registry of eclipses; the building of palaces; the use of scales; the practice of metallurgy – alike imply a settled and populous nation. The existence of such a nation not only presupposes laws and some administration of justice, which we know existed, but it presupposes successful laws – laws conforming in some degree to the conditions of social stability – laws enacted because it was found that the actions forbidden by them were dangerous to the State. We do not by any means say that all, or even the greater part, of the laws were of this nature; but we do say, that the fundamental ones were. It cannot be denied that the laws affecting life and property were such. It cannot be denied that, however little these were enforced between class and class, they were to a considerable extent enforced between members of the same class. It can scarcely be questioned, that the administration of them between members of the same class was seen by rulers to be necessary for keeping society together. But supposition aside, it is clear that the habitual recognition of these claims in their laws, implied some prevision of social phenomena. That same idea of equality , which, as we have seen, underlies other science, underlies also morals and sociology. The conception of justice, which is the primary one in morals; and the administration of justice, which is the vital condition to social existence; are impossible without the recognition of a certain likeness in men’s claims, in virtue of their common humanity. Equity literally means equalness; and if it be admitted that there were even the vaguest ideas of equity in these primitive eras, it must be admitted that there was some appreciation of the equalness of men’s liberties to pursue the objects of life – some appreciation, therefore, of the essential principle of national equilibrium.
Thus in this initial stage of the positive sciences, before geometry had yet done more than evolve a few empirical rules – before mechanics had passed beyond