Вторая эра машин. Работа, прогресс и процветание в эпоху новейших технологий. Эрик Бриньолфсон
это за пару дней. Они начнут собирать нужную информацию заранее, за несколько месяцев до переезда. В наши дни поиск такой первоначальной информации в интернете происходит постоянно: вы начинаете с того, что вбиваете в поисковой строке «риелтор в Финиксе», «районы Финикса» или просто «цена дом две спальни Финикс».
Чтобы протестировать свою гипотезу, Эрик поинтересовался у Google, может ли он получить данные по статистике поиска. Ему ответили, что никакого специального разрешения здесь не требуется и что эти данные бесплатно доступны онлайн. Эрик и его аспирант Линн Ву (оба – совсем не специалисты в области экономики недвижимости) построили простую статистическую модель, чтобы изучить данные, использующие контент, создаваемый пользователями в ходе их поисковых запросов через Google. Их модель связывала изменения в количестве поисковых запросов определенного рода с последующими изменениями цен на недвижимость и предсказывала, что если количество запросов, подобных описанным выше, сегодня выросло, то цены на дома и объем предложения в Финиксе будут расти в ближайшие три месяца. Оказалось, что эта простая модель вполне работает: фактически она предсказывала уровень продаж на 23,6 % точнее, чем прогнозы, публикуемые экспертами Национальной ассоциации риэлторов.
Подобных же успехов при использовании доступных цифровых данных добиваются и исследователи в других областях. Команда под руководством Руми Чунара из Гарвардской медицинской школы исследовала пути распространения холеры после землетрясения 2010 года на Гаити и выяснила, что информация об эпидемии в «Твиттере» была не менее точной, чем данные официальных отчетов; кроме того, эта информация появлялась как минимум на две недели раньше.[105] Ситарам Асур и Бернардо Губерман из Лаборатории социальной инженерии компании Hewlett Packard обнаружили, что твиты могут также использоваться для прогнозирования дохода от проданных билетов в кинотеатры. По словам ученых, их исследование «наглядно продемонстрировало, как социальные сети отражают коллективную мудрость, которая, если ее направить в нужное русло, может чрезвычайно мощно и точно предсказывать, что произойдет в будущем».[106]
Дигитализация может также помочь нам лучше понимать прошлое. Так, по состоянию на март 2012 года компания Google отсканировала свыше 20 миллионов книг, опубликованных за несколько столетий.[107] Этот огромный массив цифровых слов и фраз формирует основу для так называемой культуромики, или «применения техники сбора данных с высокой пропускной способностью и их анализа для изучения человеческой культуры».[108] Команда профессионалов из нескольких отраслей под руководством Жана-Батиста Мишеля и Эреца Либермана Эйдена проанализировала свыше 5 миллионов книг, опубликованных на английском языке начиная с 1800 года. Помимо прочего, они обнаружили, что количество слов в английском языке за период между 1950 и 2000 годами выросло более чем на 70 %, что прославиться в наши дни можно быстрее и легче, чем в прошлом (но и проходит эта слава быстрее),
105
Rumi Chunara, Jason R. Andrews, and John S. Brown-stein, “Social and News Media Enable Estimation of Epidemiological Patterns early in the 2010 Haitian Cholera Outbreak”, American Journal of Tropical Medicine and Hygiene 86, no. 1 (2012): стр. 39–45, doi:10.4269/ajtmh.2012.11–0597.
106
Sitaram Asur and Bernardo A. Huberman, “Predicting the Future with Social Media”, arXiv e-print, Cornell University Library, 29 марта 2010 г., http://arxiv.org/abs/1003.5699.
107
Jennifer Howard, “Google Begins to Scale Back Its Scanning of Books From University Libraries”, Chronicle of Higher Education, 9 марта 2012 г., http://chronicle.com/article/Google-Begins-to-Scale-Back/131109/.
108
“Culturomics”, http://www.culturomics.org/ (по состоянию на 28 июня 2013 г.).