Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras. Alfred Russel Wallace

Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras - Alfred Russel Wallace


Скачать книгу
of the Atlantic, four specimens of which given by Sir W. Thomson (Voyage of the Challenger Vol. II. Appendix, pp. 374-376, Nos. 9, 10, 11 and 12) from the mid-Atlantic, show the following proportions:—

In addition to the above there is a quantity of insoluble residue consisting of small particles of sanidine, augite, hornblende, and magnetite, supposed to be the product of volcanic dust or ashes carried either in the air or by ocean currents. This volcanic matter amounts to from 4.60 to 8.33 per cent. of the Globigerina-ooze of the mid-Atlantic, where it seems to be always present; and the small proportion of similar matter in true chalk is another proof that its origin is different, and that it was deposited far more rapidly than the oceanic ooze.

The following analysis of chalk by Mr. D. Forbes will show the difference between the two formations:—

(From Quarterly Journal of the Geological Society, Vol. XXVII.)

The large proportion of carbonate of lime, and the very small quantity of silica, alumina, and insoluble débris, at once distinguish true chalk from the Globigerina-ooze of the deep ocean bed.

24

Notes on Reticularian Rhizopoda; in Microscopical Journal, Vol. XIX., New Series, p. 84.

25

Proceedings of the Royal Society, Vol. XXIV. p. 532.

26

See Presidential Address in Sect. D. of British Association at Plymouth, 1877.

27

Geological Magazine, 1871, p. 426.

28

In his lecture on Geographical Evolution (which was published after the greater part of this chapter had been written) Sir Archibald Geikie expresses views in complete accordance with those here advocated. He says:—"The next long era, the Cretaceous, was more remarkable for slow accumulation of rock under the sea than for the formation of new land. During that time the Atlantic sent its waters across the whole of Europe and into Asia. But they were probably nowhere more than a few hundred feet deep over the site of our continent, even at their deepest part. Upon their bottom there gathered a vast mass of calcareous mud, composed in great part of foraminifera, corals, echinoderms, and molluscs. Our English chalk, which ranges across the north of France, Belgium, Denmark, and the north of Germany, represents a portion of the deposits of that sea-floor." The weighty authority of the Director-General of the Geological Survey may perhaps cause some geologists to modify their views as to the deep-sea origin of chalk, who would have treated any arguments advanced by myself as not worthy of consideration.

29

Introduction and Succession of Vertebrate Life in America, by Professor O. C. Marsh. Reprinted from the Popular Science Monthly, March, April, 1878.

30

Physical Geography and Geology of Great Britain, 5th Ed. p. 61.

31

Of late it has been the custom to quote the so-called "ridge" down the centre of the Atlantic as indicating an extensive ancient land. Even Professor Judd at one time adopted this view, speaking of the great belt of Tertiary volcanoes "which extended through Greenland, Iceland, the Faroe Islands, the Hebrides, Ireland, Central France, the Iberian Peninsula, the Azores, Madeira, Canaries, Cape de Verde Islands, Ascension, St. Helena, and Tristan d'Acunha, and which constituted as shown by the recent soundings of H.M.S. Challenger a mountain-range, comparable in its extent, elevation, and volcanic character with the Andes of South America" (Geological Mag. 1874, p. 71). On examining the diagram of the Atlantic Ocean in the Challenger Reports, No. 7, a considerable part of this ridge is found to be more than 1,900 fathoms deep, while the portion called the "Connecting Ridge" seems to be due in part to the deposits carried out by the River Amazon. In the neighbourhood of the Azores, St. Paul's Rocks, Ascension, and Tristan d'Acunha are considerable areas varying from 1,200 to 1,500 fathoms deep, while the rest of the ridge is usually 1,800 or 1,900 fathoms. The shallower water is no doubt due to volcanic upheaval and the accumulation of volcanic ejections, and there may be many other deeply submerged old volcanoes on the ridge; but that it ever formed a chain of mountains "comparable in elevation with the Andes," there seems not a particle of evidence to prove. It is however probable that this ridge indicates the former existence of some considerable Atlantic islands, which may serve to explain the presence of a few identical genera, and even species of plants and insects in Africa and South America, while the main body of the fauna and flora of these two continents remains radically distinct.

In my Darwinism (pp. 344-5) I have given an additional argument founded on the comparative height and area of land with the depth and area of ocean, which seems to me to add considerably to the weight of the evidence here submitted for the permanence of oceanic and continental areas.

32

In a review of Mr. T. Mellard Reade's Chemical Denudation and Geological Time, in Nature (Oct. 2nd, 1879), the writer remarks as follows:—"One of the funny notions of some scientific thinkers meets with no favour from Mr. Reade, whose geological knowledge is practical as well as theoretical. They consider that because the older rocks contain nothing like the present red clays, &c., of the ocean floor, that the oceans have always been in their present positions. Mr. Reade points out that the first proposition is not yet proved, and the distribution of animals and plants and the fact that the bulk of the strata on land are of marine origin are opposed to the hypothesis." We must leave it to our readers to decide whether the "notion" developed in this chapter is "funny," or whether such hasty and superficial arguments as those here quoted from a "practical geologist" have any value as against the different classes of facts, all pointing to an opposite conclusion, which have now been briefly laid before them, supported as they are by the expressed opinion of so weighty an authority as Sir Archibald Geikie, who, in the lecture already quoted says:—"From all this evidence we may legitimately conclude that the present land of the globe, though formed in great measure of marine formations, has never lain under the deep sea; but that its site must always have been near land. Even its thick marine limestones are the deposits of comparatively shallow water."

33

Antiquity of Man, 4th Ed. pp. 340-348.

34

The Great Ice Age and its Relation to the Antiquity of Man. By James Geikie, F.R.S. (Isbister and Co., 1874.)

35

This view of the formation of "till" is that adopted, by Dr. Geikie, and upheld by almost all the Scotch, Swiss, and Scandinavian geologists. The objection however is made by many eminent English geologists, including the late Mr. Searles V. Wood, Jun., that mud ground off the rocks cannot remain beneath the ice, forming sheets of great thickness, because the glacier cannot at the same time grind down solid rock and yet pass over the surface of soft mud and loose stones. But this difficulty will disappear if we consider the numerous fluctuations in the glacier with increasing size, and the additions it must have been constantly receiving as the ice from one valley after another joined together, and at last produced an ice-sheet covering the whole country. The grinding power is the motion and pressure of the ice, and the pressure will depend on its thickness. Now the points of maximum thickness must have often changed their positions, and the result would be that the matter ground out in one place would be forced into another place where the pressure was less. If there were no lateral escape for the mud, it would necessarily support the ice over it just as a water-bed supports the person lying on it; and when there was little drainage water, and the ice extended, say, twenty miles in every direction from a given part of a valley where the ice was of less than the average thickness, the mud would necessarily accumulate at this part simply because there was no escape for it. Whenever the pressure all round any area was greater than the pressure on that area, the débris of the surrounding parts would be forced into it, and would even raise up the ice to give it room. This is a necessary result of hydrostatic pressure. During this process the superfluous water would no doubt escape through fissures or pores of the ice, and would leave the mud and stones in that excessively compressed and tenacious condition in which the "till" is found. The unequal thickness and pressure of the ice above referred to would be a necessary consequence of the inequalities in the valleys, now narrowing into gorges,


Скачать книгу