Essays Upon Heredity and Kindred Biological Problems. Weismann August
between duration of life in the larva and in the mature insect, or imago; or, to put it differently, to suppose that the total duration of life is the same in insects of the same size and activity, so that the time which is spent in the larval state is, as it were, deducted from the life of the imago, and vice versa. That this cannot be the case is shown by the fact already alluded to, that among bees and ants larval life is of the same length in males and females, while there is a difference of some years between the lengths of their lives as imagos.
The life of the imago is generally very short, and not only ends with the close of the period of reproduction, as was mentioned above, but this latter period is also itself extremely short [See Note 3].
The larva of the cockchafer devours the roots of plants for a period of four years, but the mature insect with its more complex structure endures for a comparatively short time; for the beetle itself dies in about a month after completing its metamorphosis. And this is by no means an extreme case. Most butterflies have an even shorter life, and among the moths there are many species (as in the Psychidae) which only live for a few days, while others again, which reproduce by the parthenogenetic method, only live for twenty-four hours. The shortest life is found in the imagos of certain may-flies, which only live four to five hours. They emerge from the pupa-case towards the evening, and as soon as their wings have hardened, they begin to fly, and pair with one another. Then they hover over the water; their eggs are extruded all at once, and death follows almost immediately.
The short life of the imago in insects is easily explained by the principles set forth above. Insects belong to the number of those animals which, even in their mature state, are very liable to be destroyed by others which are dependent upon them for food; but they are at the same time among the most fertile of animals, and often produce an astonishing number of eggs in a very short time. And no better arrangement for the maintenance of the species under such circumstances can be imagined than that supplied by diminishing the duration of life, and simultaneously increasing the rapidity of reproduction.
This general tendency is developed to very different degrees according to conditions peculiar to each species. The shortening of the period of reproduction, and the duration of life to the greatest extent which is possible, depends upon a number of co-operating circumstances, which it is impossible to enumerate completely. Even the manner in which the eggs are laid may have an important effect. If the larva of the may-fly lived upon some rare and widely distributed food-plant instead of at the bottom of streams, the imagos would be compelled to live longer, for they would be obliged—like many moths and butterflies—to lay their eggs singly or in small clusters, over a large area. This would require both time and strength, and they could not retain the rudimentary mouth which they now possess, for they would have to feed in order to acquire sufficient strength for long flights; and—whether they were carnivorous like dragon-flies, or honey-eating like butterflies—their feeding would itself cause a further expenditure of both time and strength, which would necessitate a still further increase in the duration of life. And as a matter of fact we find that dragon-flies and swift-flying hawk-moths often live for six or eight weeks and sometimes longer.
We must also remember that in many species the eggs are not mature immediately after the close of the pupal stage, but that they only gradually ripen during the life of the imago, and frequently, as in many beetles and butterflies, do not ripen simultaneously, but only a certain number at a time. This depends, first, upon the amount of reserve nutriment accumulated in the body of the insect during larval life; secondly, upon various but entirely different circumstances, such as the power of flight. Insects which fly swiftly and are continually on the wing, like hawk-moths and dragon-flies, cannot be burdened with a very large number of ripe eggs. In these cases the gradual ripening of the eggs becomes necessary, and involves an increase in the duration of life. In Lepidoptera, we see how the power of flight diminishes step by step as soon as other circumstances permit, and simultaneously how the eggs ripen more and more rapidly, while the length of life becomes shorter, until a minimum is reached. Only two stages in the process of transformation can be mentioned here.
The strongest flyers—the hawk-moths and butterflies—must be looked upon as the most specialised and highest types among the Lepidoptera. Not only do they possess organs for flight in their most perfect form, but also organs for feeding—the characteristic spiral proboscis or ‘tongue.’
There are certain moths (among the Bombyces) of which the males fly as well as the hawk-moths, while the females are unable to use their large wings for flight, because the body is too heavily weighted by a mass of eggs, all of which reach maturity at the same time. Such species, as for instance Aglia tau, are unable to distribute their eggs over a wide area, but are obliged to lay them all in a single spot. They can however do this without harm to the species, because their caterpillars live upon forest trees, which provide abundant food for a larger number of larvae than can be produced by the eggs of a single female. The eggs of Aglia tau are deposited directly after pairing, and shortly afterwards the insect dies at the foot of the tree among the moss-covered roots of which it has passed the winter in the pupal state. The female moth seldom lives for more than three or four days; but the males which fly swiftly in the forests, seeking for the less abundant females, live for a much longer period, certainly from eight to fourteen days2.
The females of the Psychidae also deposit all their eggs in one place. The grasses and lichens upon which their caterpillars live grow close at hand upon the surface of the earth and stones, and hence the female moth does not leave the ground, and generally does not even quit the pupa-case, within which it lays its eggs; as soon as this duty is finished, it dies. In relation to these habits the wings and mouth of the female are rudimentary, while the male possesses perfectly developed wings.
The causes which have regulated the length of life in these cases are obvious enough, yet still more striking illustrations are to be found among insects which live in colonies.
The duration of life varies with the sex in bees, wasps, ants, and termites: the females have a long life, the males a short one; and there can be no doubt that the explanation of this fact is to be found in adaptation to external conditions of life.
The queen-bee—the only perfect female in the hive—lives two to three years, and often as long as five years, while the male bees or drones only live four to five months. Sir John Lubbock has succeeded in keeping female and working ants alive for seven years—a great age for insects3,—while the males only lived a few weeks.
These last examples become readily intelligible when we remember that the males neither collect food nor help in building the hive. Their value to the colony ceases with the nuptial flight, and from the point of view of utility it is easy to understand why their lives should be so short [See Note 7 and Note 9]. But the case is very different with the female. The longest period of reproduction possible, when accompanied by very great fertility, is, as a rule, advantageous for the maintenance of the species. It cannot however be attained in most insects, for the capability of living long would be injurious if all individuals fell a prey to their enemies before they had completed the full period of life. Here it is otherwise: when the queen-bee returns from her nuptial flight, she remains within the hive until her death, and never leaves it. There she is almost completely secure from enemies and from dangers of all kinds; thousands of workers armed with stings protect, feed, and warm her; and in short there is every chance of her living through the full period of a life of normal length. And the case is entirely similar with the female ant. In neither of these insects is there any reason why the advantages which follow from a lengthened period of reproductive activity should be abandoned [See Note 6].
That an increase in the length of life has actually taken place in such cases seems to be indicated by the fact that both sexes of the saw-flies—the probable ancestors of bees and ants—have but a short life. On the other hand, the may-flies afford an undoubted instance of the shortening of life. Only in certain species is life as short as I have indicated above; in the majority it lasts for one or more days. The extreme cases, with a life of only a
3
[Sir John Lubbock has now kept a queen ant alive for nearly 15 years. See note 2 {note 18 below} on p. 51.—E. B. P.]