The Plurality of Worlds. William Whewell

The Plurality of Worlds - William Whewell


Скачать книгу
then, we will turn our attention.

      One science has employed itself in investigating the nature and history of the earth by an examination of the materials of which it is composed; namely, Geology. Let us call to mind some of the results at which this science has arrived.

      4. A very little attention to what is going on among the materials of which the earth's surface is composed, suffices to show us that there are causes of change constantly and effectually at work. The earth's surface is composed of land and water, hills and valleys, rocks and rivers. But these features undergo change, and produce change in each other. The mountain-rivers cut deeper and deeper into the ravines in which they run; they break up the rocks over which they rush, use the fragments as implements of further destruction, pile them up in sloping mounds where the streams issue from the mountains, spread them over the plains, fill up lakes with sediment, push into the sea great deltas. The sea batters the cliffs and eats away the land, and again, forms banks and islands where there had been deep water. Volcanoes pour out streams of lava, which destroy the vegetation over which they flow, and which again, after a series of years, are themselves clothed with vegetation. Earthquakes throw down tracts of land beneath the sea, and elevate other tracts from the bottom of the ocean. These agencies are everywhere manifest; and though at a given moment, at a given spot, their effect may seem to us almost imperceptible, too insignificant to be taken account of, yet in a long course of years almost every place has undergone considerable changes. Rivers have altered their courses, lakes have become plains, coasts have been swept away or have become inland districts, rich valleys have been ravaged by watery or fiery deluges, the country has in some way or other assumed a new face. The present aspect of the earth is in some degree different from what it was a few thousand years ago.

      5. But yet, in truth, the changes of which we thus speak have not been very considerable. The forms of countries, the lines of coasts, the ranges of mountains, the groups of valleys, the courses of rivers, are much the same now as they were in ancient times. The face of the earth, since man has had any knowledge of it, may have undergone some change, but the changeable has borne a small proportion to the permanent. Changes have taken place, and are taking place, but they do not take place rapidly. The ancient earth and the modern earth are, in all their main physical features, identical; and we must go backwards through a considerably larger interval than that which carries us back to what we usually term antiquity, before we are led, by the operation of causes now at work, to an aspect of the earth's surface very different from that which it now presents.

      6. For instance, rivers do, no doubt, more or less alter, in the course of years, by natural causes. The Rhine, the Rhone, the Po, the Danube, have, certainly, during the last four thousand years, silted up their beds in level places, expanded the deltas at their mouths, changed the channels by which they enter the sea; and very probably, in their upper parts, altered the forms of their waterfalls and of their shingle beds. Yet even if we were thus to go backwards ten thousand, or twenty, or thirty thousand years, (setting aside great and violent causes of change, as earthquakes, volcanic eruptions, and the like,) the general form and course of these rivers, and of the ranges of mountains in which they flow, would not be different from what it is now. And the same may be said of coasts and islands, seas and bays. The present geography of the earth may be, and from all the evidence which we have, must be, very ancient, according to any measures of antiquity which can apply to human affairs.

      7. But yet the further examination of the materials of the earth carries us to a view beyond this. Though the general forms of the land and the waters of continents and seas, were, several thousand years ago, much the same as they now are; yet it was not always so. We have clear evidence that large tracts which are now dry ground, were formerly the bed of the ocean; and these, not tracts of the shore, where the varying warfare of sea and land is still going on, but the very central parts of great continents; the Alps, the Pyrenees, the Himalayas. For not only are the rocks of which these great mountain-chains consist, of such structure that they appear to have been formed as layers of sediment at the bottom of water; but also, these layers contain vast accumulations of shells, or impressions of shells, and other remains of marine animals. And these appearances are not few, limited, or partial. The existence of such marine remains, in the solid substance of continents and mountains, is a general, predominant, and almost universal fact, in every part of the earth. Nor is any other way of accounting for this fact admissible, than that those materials really have, at some time, formed bottoms of seas. The various other conjectures and hypotheses, which were put forward on this subject, when the amount, extent, multiplicity, and coherence of the phenomena were not yet ascertained, and when their natural history was not yet studied, cannot now be considered as worthy of the smallest regard. That many of our highest hills are formed of materials raised from the depths of ocean, is a proposition which cannot be doubted, by any one, who fairly examines the evidence which nature offers.

      8. If we take this proposition only, we cannot immediately connect it with our knowledge respecting the surface of the earth in its present form. We learn that what is now land, has been sea; and we may suppose (since it is natural to assume that the bulk of the sea has not much changed) that what is now sea was formerly land. But, except we can learn something of the manner in which this change took place, we cannot make any use of our knowledge. Was the change sudden, or gradual; abrupt, or successive; brief, or long-continuing?

      9. To these questions, the further study of the facts enables us to return answers with great confidence. The change or changes which produced the effects of which we have spoken—the conversion of the bottom of the ocean into the centre of our greatest continents and highest mountains,—were undoubtedly gradual, successive, and long continued. We must state very briefly the grounds on which we make this assertion.

      10. The masses which form our mountain-chains, offer evidence, as I have said, that they were deposited as sediment at the bottom of a sea, and then hardened. They consist of successive layers of such sediment, making up the whole mass of the mountain. These layers are, of course, to a certain extent, a measure of the time during which the deposition of sediment took place. The thicker the mass of sediment, the more numerous and varied its beds, and the longer period must we suppose to have been requisite for its formation. Without making any attempt at accurate or definite estimation, which would be to no purpose, it is plain that a mass of sedimentary strata five thousand or ten thousand feet thick, must have required, for its deposit, a long course of years, or rather, a long course of ages.

      11. But again: on further examination it is found, that we have not merely one series of sedimentary deposits, thus forming our mountains. There are a number of different series of such layers or strata, to be found in different ranges of hills, and in the same range, one series resting upon another. These different series of strata are distinguishable from one another by their general structure and appearance, besides more intimate characters, of which we shall shortly have to speak. Each such series appears to have a certain consistency of structure within itself; the layers of which it is composed being more or less parallel, but the successive series are not thus always parallel, the lower ones being often highly inclined and irregular, while the upper ones are more level and continuous: as if the lower strata had been broken up and thrown into disorder, and then a new series of strata had been deposited horizontally on their fragments. But in whatever way these different sedimentary series succeeded each other, each series must have required, as we have seen, a long period for its formation; and to estimate the length of the interval between the two series, we have, at the present stage of our exposition, no evidence.

      12. But the mechanical structure of the strata, the result, as it seems, of aqueous sedimentary deposit, is not the only, nor the most important evidence, with regard to the length of time occupied by the formation of the rocky layers which now compose our mountains. As we have said, they contain shells, and other remains of creatures which live in the sea. These they contain, not in small numbers, scattered and detached, but in vast abundance, as they are found in those parts of the ocean which is most alive with them. There are the remains of oysters and other shell-fish in layers, as they live at present in the seas near our shores; of corals, in vast patches and beds, as they now occur in the waters of the Pacific; of shoals of fishes, of many different kinds, in immense abundance. Each of these beds of shells, of corals, and of fishes, must have required many years, perhaps many centuries, for the growth of the successive individuals and successive generations of which


Скачать книгу