Вселенная Стивена Хокинга (сборник). Стивен Хокинг

Вселенная Стивена Хокинга (сборник) - Стивен Хокинг


Скачать книгу
свет состоит из волн, квантовая гипотеза Планка предсказывает, что в некоторых отношениях он все же ведет себя так, как если бы состоял из частиц: свет может излучаться и поглощаться только дискретными порциями, или квантами. Точно так же из принципа неопределенности Гейзенберга следует, что частицы в некоторых отношениях ведут себя так же, как волны. Как мы уже видели, у них нет четкого положения, они «размазаны» в пространстве в соответствии с неким распределением вероятности. В основе квантовой механики лежит математический аппарат совершенно нового типа: он не описывает реальный мир как состоящий из объектов, которые можно однозначно отнести к частицам или волнам. В этих терминах описываются только наблюдения мира. Таким образом, в квантовой механике мы имеем дело с корпускулярно-волновым дуализмом: для некоторых задач бывает удобно рассматривать частицы как волны, для других – рассматривать волны как частицы. Одно из важных следствий такого подхода состоит в возможности наблюдения так называемой интерференции двух множеств волн или частиц. То есть гребни одного множества волн могут накладываться на впадины другого. В таком случае два множества волн ослабляют друг друга, а не суммируются, образуя более сильную волну, как можно было ожидать (рис. 4.1). Хорошо всем знакомым примером интерференции света могут служить мыльные пузыри. Явление это возникает при отражении света от двух стенок тонкой мыльной пленки, образующей пузырь. Белый свет состоит из волн разной длины, то есть волн разного цвета. Для волн некоторой длины гребни волн, отраженных от одной из стенок мыльной пленки, накладываются на впадины волн, отраженных от другой стенки пленки. Соответствующие этим длинам волн цвета отсутствуют в отраженном свете, который из-за этого воспринимается не как белый, а как окрашенный.

      Рис. 4.1

      Интерферировать могут и частицы – из-за обусловленного квантовой механикой волнового дуализма. Одним из наиболее известных примеров является так называемый двухщелевой эксперимент (рис. 4.2). Представьте себе перегородку – тонкую стенку – с двумя узкими параллельными щелями. С одной стороны от перегородки разместим источник света определенного цвета (то есть с определенной длиной волны). Большая часть света попадет в перегородку, но небольшое его количество пройдет через щели. Теперь представьте, что вы установили с другой стороны от перегородки экран. На любую точку этого экрана приходит свет из обеих щелей. Но в общем случае пути, которые свет проходит от источника до экрана через щели, отличаются друг от друга. Это означает, что волны, приходящие от двух щелей, окажутся не в фазе, когда они достигнут экрана. В некоторых местах впадины одной волны наложатся на гребни другой, и волны взаимно погасят друг друга, а в других местах гребни двух волн наложатся друг на друга, то же произойдет со впадинами, в результате чего волны усилят друг друга. Таким образом


Скачать книгу