Значимые фигуры. Жизнь и открытия великих математиков. Иэн Стюарт

Значимые фигуры. Жизнь и открытия великих математиков - Иэн Стюарт


Скачать книгу
из которых слишком мало, а другое – слишком велико. Подобные методы можно найти в математике и сегодня. Не так давно им учили в школах, чтобы использовать таблицы логарифмов. Цзу предложил две простые дроби, приближенно выражающие: это Архимедова дробь 22/7, равная π с точностью до двух знаков после запятой, и 355/113, равная π с точностью до десяти знаков. Первое значение и сегодня широко используется, второе тоже хорошо известно математикам.

* * *

      Одна из реконструкций доказательства теоремы Пифагора, принадлежащего Лю Хуэю и восстановленного на базе текстовых указаний в его книге, представляет собой хитроумное и необычное рассечение. Собственно прямоугольный треугольник, о котором идет речь, показан на рисунке черным. Квадрат, построенный на одном из его катетов (светло-серый), рассечен надвое диагональю. Квадрат, построенный на другом катете, разрезан на пять частей: один маленький квадратик (темно-серый), пара симметрично расположенных треугольников (средне-серых) тех же формы и размера, что и первоначальный прямоугольный треугольник, и пара симметрично расположенных треугольников (белых), заполняющих оставшееся место. После этого все семь кусочков собираются воедино и образуют квадрат на гипотенузе.

      Для доказательства этой теоремы могут быть использованы и другие рассечения, попроще.

      Древнекитайские математики были нисколько не слабее своих греческих современников, и развитие китайской математики после периода Лю Хуэя видело множество открытий, опередивших появление тех же достижений в европейской математике. К примеру, оценки числа π, полученные Лю Хуэем и Цзу Чунчжи, европейцам удалось превзойти лишь 1000 лет спустя.

      Джозеф проверяет, не могли ли некоторые идеи китайских математиков попасть с купцами и торговыми караванами в Индию и Аравию, а затем, возможно, даже в Европу. Если так, то позднейшие достижения, когда европейцы заново открывали математические законы, вполне возможно, не были совершенно независимыми. В Индии в VI в. были китайские дипломаты, и китайские переводы индийских математических и астрономических трактатов сделаны в VII в. Что же до Аравии, то пророк Мухаммед выпустил хадис – изречение с религиозным смыслом, – в котором говорилось: «Ищите знание, даже если до него далеко, как до Китая». В XIV в. арабские путешественники сообщали о прочных торговых связях с Китаем, а марокканский путешественник и ученый Мухаммад ибн Баттута написал о китайских научных и технических достижениях, а также о китайской культуре в книге «Рила» – «Путешествия».

      Мы знаем, что идеи из Индии и Аравии проникали в средневековую Европу, о чем говорится в двух следующих главах. Поэтому вполне возможно, что в Европу проникали в какой-то мере и китайские знания. Присутствие иезуитов в Китае в XVII и XVIII вв. отчасти через Конфуция вдохновило философию Лейбница. Можно предположить, что существовала сложная сеть, посредством которой математика, физика и многое другое циркулировало между Грецией, Ближним Востоком, Индией


Скачать книгу