The Intention Experiment: Use Your Thoughts to Change the World. Lynne McTaggart

The Intention Experiment: Use Your Thoughts to Change the World - Lynne  McTaggart


Скачать книгу
world teeming with subatomic activity.

      In the world of classical physics, a field is a region of influence, in which two or more points are connected by a force, like gravity or electromagnetism. However, in the world of the quantum particle, fields are created by exchanges of energy. According to Heisenberg’s uncertainty principle, one reason that quantum particles are ultimately unknowable is because their energy is always being redistributed in a dynamic pattern. Although often rendered as tiny billiard balls, subatomic particles more closely resemble little packets of vibrating waves, passing energy back and forth as if in an endless game of basketball. All elementary particles interact with each other by exchanging energy through what are considered temporary or ‘virtual’ quantum particles. These are believed to appear out of nowhere, combining and annihilating each other in less than an instant, causing random fluctuations of energy without any apparent cause. Virtual particles, or negative energy states, do not take physical form, so we cannot actually observe them. Even ‘real’ particles are nothing more than a little knot of energy, which briefly emerge and disappear back into the underlying energy field.

      * * * Sai Ghosh had proved that non-locality existed in the large building blocks of matter and the other scientists proved that all matter in the universe was, in a sense, a satellite of a large central energy field. But how could matter be affected by this connection? The central assumption of all of classical physics is that large material things in the universe are set pieces, a fait accompli of manufacture. How can they possibly be changed?

      Vedral had an opportunity to examine this question when he was invited to work with the renowned quantum physicist Anton Zeilinger. Zeilinger’s Institute for Experimental Physics lab at the University of Vienna was at the very frontier of some of the most exotic research into the nature of quantum properties. Zeilinger himself was profoundly dissatisfied with the current scientific explanation of nature, and he had passed on that dissatisfaction and the quest to resolve it to his students.

      Zeilinger was particularly interested in superposition, and the implications of the Copenhagen Interpretation – that subatomic particles exist only in a state of potential. Could objects, and not simply the subatomic particles that compose them, he wondered, exist in this hall-of-mirrors state? To test this question, Zeilinger employed a piece of equipment called a Talbot Lau interferometer, developed by some colleagues at MIT, using a variation on the famous double-slit experiment of Thomas Young, a British physicist of the nineteenth century. In Young’s experiment, a beam of pure light is sent through a single hole, or slit, in a piece of cardboard, then passes through a second screen with two holes before finally arriving at a third, blank screen.

      When two waves are in phase (that is, peaking and troughing at the same time), and bump into each other – technically called ‘interference’ – the combined intensity of the waves is greater than each individual amplitude. The signal gets stronger. This amounts to an imprinting or exchange of information, called ‘constructive interference’. If one is peaking when the other troughs, they tend to cancel each other out – called ‘destructive interference’. With constructive interference, when all the waves are wiggling in synch, the light will get brighter; destructive interference will cancel out the light and result in complete darkness.

      In the experiment, the light passing through the two holes forms a zebra pattern of alternating dark and light bands on the final blank screen. If light were simply a series of particles, two of the brightest patches would appear directly behind the two holes of the second screen. However, the brightest portion of the pattern is halfway between the two holes, caused by


Скачать книгу