Физико-химические основы синтеза и применения тонкослойных неорганических сорбентов. Николай Дмитриевич Бетенеков
процесс коагуляции.
1.1. Электростатический фактор заключается в уменьшении межфазного натяжения вследствие возникновения двойного электрического слоя на поверхности частиц. Появление электрического потенциала на межфазной поверхности обусловливается поверхностной электролитической диссоциацией или адсорбцией электролитов.
1.2. Адсорбционно-сольватный фактор состоит в уменьшении межфазного натяжения при взаимодействии частиц дисперсной фазы со средой (благодаря адсорбции и сольватации).
При действии адсорбционно-сольватного фактора устойчивости в отсутствии ДЭС поверхностное натяжение уменьшается в результате сольватации поверхностных частиц.
Поверхность частиц в системах с адсорбционно-сольватным фактором устойчивости лиофильна по своей природе или лиофилизирована вследствие адсорбции стабилизаторов – неэлектролитов, имеющих сродство к растворителю. В результате взаимодействия частиц со средой на их поверхности формируются сольватные слои, которые перекрываются при сближении частиц, что снижает стресление системы к коагуляции. Механизм действия сил отталкивания можно представить как совершение работы для разрушения сольватных слоев и для частичной десорбции молекул из них при сближении частиц. Системы, в которых действует адсорбционно-сольватный фактор, могут быть агрегативно устойчивы даже при практическом отсутствии электрического потенциала на поверхности. Действие электролитов в этих системах подобно эффекту высаливания ими в растворах неэлектролитов, т.е. сводится к уменьшению активности растворителя. Особенно большую роль играет адсорбционно-сольватный фактор в системах с неполярными средами, в которых возможности диссоциации и образования ДЭС проявляются слабо (растворы ПАВ). Интересно, что для дисперсных систем оксидов факторы устойчивости могут изменяться в зависимости от рН среды. Особенно сильно эта зависимость выражена для золей SiO2. Например, гидрозоль SiO2 при рН = 7, 0 – 8, 0 устойчив главным образом благодаря адсорбционно-сольватному фактору. Он не коагулирует при введении электролита даже в концентрациях 1 моль/л и более. С увеличением рН гидроксильные группы диссоциируют, фактор устойчивости меняется на электростатический, и золь становится более чувствительным к электролитам. Для частиц более оснóвных оксидов характерно увеличение положительного заряда на поверхности с ростом кислотности среды, вследствие того, что гидроксильные группы переходят с поверхности в раствор и нейтрализуются ионами водорода. Например, золь оксида Fe более устойчив в кислой среде, в которой частицы имеют положительный заряд. Менее оснóвные оксиды в кислой среде (ниже ИЭТ) приобретают положительный заряд в результате адсорбции ионов Н+ на гидроксильных группах поверхности.
1.3. Энтропийный фактор, как и первые два относится к термодинамическим и действует в системах, в которых частицы или их поверхностные слои участвуют в тепловом движении.