Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной. Сборник
Ньютон, как и Максвелл, стремился к объединению различных явлений: он показал, что та же сила, которая удерживает нас на поверхности Земли, удерживает и Луну от бегства в космическое пространство и заставляет Землю кружить вокруг Солнца. Эта теория работает прекрасно, но подразумевает наличие мгновенной притягивающей силы, подобно тому, как присутствие Земли у нас под ногами означает, что к нам с ее стороны приложена сила. В каждый момент времени мы чувствуем притяжение всех галактик, рассеянных в космосе. Такие представления не уживаются со специальной теорией относительности, в которой ничто не может распространяться мгновенно; чтобы уладить противоречия, приходится предположить, что скорость движения тел, а также их взаимодействия, не должна превышать скорость света.
Первую попытку внедрить гравитацию в свою теорию Эйнштейн предпринял в 1907 году, сформулировав так называемый принцип эквивалентности. Он указал на то, что при падении мы как будто находимся в мире без гравитации. Окружающие нас предметы, находящиеся одновременно с нами в состоянии падения, будут казаться неподвижными, потому что падают с такой же скоростью. Именно это и происходит на Международной космической станции: то, что космонавты находятся в невесомости, вовсе не означает, что на них не действует поле притяжения Земли; просто космическая станция все время падает на Землю вместе с космонавтами. (Другое дело, что она никогда не упадет на нашу планету, так как одновременно двигается с высокой скоростью в горизонтальном направлении.)
Гению Эйнштейна, вдохновленному философскими воззрениями Маха, хватило смелости утверждать, что любой эксперимент, выполненный, например, в условиях космической станции, покажет такой же результат, как и при полном отсутствии гравитации. Это и есть принцип эквивалентности.
Самое любопытное, что теория гравитации Эйнштейна вытекала из глубоких размышлений о ситуациях, в которых сама сила, о которой идет речь, просто-напросто исчезает. Поэтому неудивительно, что потребовалось привлечь основательный математический аппарат, чтобы превратить идею в теорию, способную выдвинуть осмысленные предсказания. В 1913 году Эйнштейн в своих изысканиях взял на вооружение идею Минковского о пространстве-времени. Эйнштейн обнаружил, что верная картина движения объектов в гравитационном поле получится, если предположить, что пространство-время искривлено, а объекты пытаются проложить себе кратчайший путь через это искривленное пространство-время. Но понять, что заставляет пространство-время искривляться, он не мог.
На этих порах Эйнштейн начал сражение с математикой. В 1915 году в течение нескольких месяцев он вел бурную переписку со многими учеными, в особенности с немецким математиком Давидом Гильбертом (1862–1943). Работы Эйнштейна и Гильберта были настолько взаимосвязаны, что трудно точно сказать, кто из них первым создал уравнения гравитационного поля. Но, вне всякого сомнения, Эйнштейн был