ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА. Юрий Вениаминович Красков

ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА - Юрий Вениаминович Красков


Скачать книгу
ЗТФ для квадратов, чем прославился на весь мир. Это замечательное достижение науки получило название «Теорема Лагранжа о четырёх квадратах».

      Наверное, это хорошо, что Лагранж два года не дожил до того момента, когда в 1815 г. совсем ещё молодой Огюстен Коши́ (Augustin Cauchy) представил своё общее доказательство ЗТФ для всех многоугольных чисел. Но тут вдруг произошло нечто ужасное, неизвестно откуда появился нечестивый и вставил свое фэ. И вот никакой тебе мировой славы, да ещё и полная обструкция со стороны коллег.

      Рисунок 19

      Огюстéн Коши́

      И ничего уж тут не поделаешь, ну не взлюбили академики Коши и тихим сапом добились того, что это общее доказательство ЗТФ так и не попало в учебники. Также, как и доказательства Гаусса 1801 г. для треугольников и тех же квадратов никто не вспоминает, но вот зато в учебниках до сих пор по-прежнему и очень подробно излагается знаменитая теорема Лагранжа.

      Впрочем, в наш-то век всеобщей информатизации можно и не сразу заметить того, что ищешь. Если, скажем, кто-то обнаружил потерю ЗТФ и передал эту новость в Интернет, глядишь и появится кто-нибудь из любопытных, зайдёт в самую большую парижскую библиотеку и найдёт потрескавшиеся пожелтевшие от времени тома с собранием сочинений Огюстена Коши. И вот оно доказательство ЗТФ! А если ему ещё и перевод сделать, да вместе с факсимильным оригиналом разместить в том же Интернете, то это будет ох какая сенсация! … Ой, гляньте-ка, нечестивый-то просто помирает со смеху!

      Рисунок 20

      Мари́-Софи́ Жерме́н

      Тем временем, учёные всего мира, воодушевившись этими грандиозными подвижками, так воспрянули, что замахнулись аж на саму ВТФ! К ним присоединилась ещё и знаменитая женщина, очень известная среди учёных и математиков Мари́-Софи́ Жерме́н (Marie-Sophie Germain). Эта талантливая и амбициозная мадмуазель предложила изящный способ, который применили сразу два гиганта математической мысли Лежён Дирихле́ (Lejeune Dirichlet) и Адриен Лежа́ндр (Adrien Legendre), чтобы доказать… только один частный случай ВТФ для пятой степени.

      Рисунок 21

      Лежён Дирихле́

      Рисунок 22

      Адриен Лежа́ндр

      Ещё один такой же гигант Габриэль Ламе́ (Gabriel Lamé), сумел-таки сделать почти невозможное и получить доказательство высшей трудности… другого частного случая ВТФ для седьмой степени.

      Рисунок 23

      Габриэль Ламе́

      Таким образом, вся эта элитарная четвёрка представителей из высшего общества учёных сумела доказать аж целых два (!) частных случая ВТФ [3], [28].

      Этим результатом можно было гордиться, поскольку даже Эйлер также смог доказать лишь два частных случая ВТФ для 3-ей и 4-ой степеней. В доказательстве для 4-ой степени он применил метод спуска, следуя в точности рекомендациям Ферма, (см. Приложение II). Этот случай особенно важен тем, что его доказательство действительно для всех чётных степеней, т.е. для получения общего доказательства ВТФ можно рассматривать


Скачать книгу