ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА. Юрий Вениаминович Красков

ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА - Юрий Вениаминович Красков


Скачать книгу
Евклида», даже такой великий учёный как Эйлер не обратил должного внимания на эту теорему, иначе вряд ли бы он стал использовать на практике «комплексные числа», которые ей не подчиняются.

      Такая же история произошла и с Гауссом, который, также не заметил этой теоремы в «Началах» Евклида, но всё же сформулировал её, когда в ней возникла необходимость. Формулировка и доказательство Гаусса следующие:

      Каждое составное число может быть разложено на простые сомножители только одним единственным образом.

      «Если мы предположим, что составное число A, равное aαbβcγ…, где a,b,c,… обозначают различные простые числа, разложимо на простые сомножители ещё и другим способом, то прежде всего ясно, что в этой второй системе сомножителей не может встречаться других простых чисел, кроме a,b,c,…, т.к. составленное из этих последних число A не может делиться ни на какое другое простое число» [17].

      Это почти точное повторение ошибочной аргументации в доказательстве Евклида. Но если эта теорема не доказана, то всё построенное на натуральных числах основание науки рушится, а все следствия из определений и аксиом теряют свою значимость. И как же теперь быть? Ведь если с доказательством теоремы не справились такие гиганты науки как Евклид и Гаусс, то куда уж нам-то грешным. Но выход всё-таки есть, и он указан в одном удивительном документе, называемом «Письмо-завещание Ферма».

      Это письмо было отправлено Ферма в августе 1659 г. его давнему другу и бывшему коллеге по парламенту Тулузы королевскому библиотекарю Пьеру де Каркави, от которого его получил известный французский учёный Христиан Гюйгенс (Christiaan Huygens), первым возглавивший созданную в 1666 г. Французскую Академию Наук. Здесь мы приведём только отдельные выдержки из письма Ферма, которые нас особенно интересуют [26].

      «Сводка открытий в науке о числах. …

      1. Поскольку обычные методы, изложенные в Книгах, не достаточны для доказательства очень трудных предложений, я нашёл, наконец, для их решения совершенно особый путь. Я назвал этот способ доказательства бесконечным или неопределённым спуском. Сначала я пользовался им только для доказательства отрицательных предложений, как, например:

      …что не существует прямоугольного треугольника в числах, площадь которого была бы квадратом». Подробности см. Приложение II.

      Наукой о числах названа арифметика и дальнейшее содержание письма не оставляет в этом никаких сомнений. Именно с арифметики начинаются не только математические, но и все другие науки. А в самой арифметике метод спуска один из основополагающих. Далее даются примеры задач, решение которых без этого метода не только очень затруднено, но иногда и вообще вряд ли возможно. Здесь мы назовём только некоторые из этих примеров.

      «2. Долгое время я не мог приложить мой метод к утвердительным предложениям, потому что обходы и окольные пути для достижения цели гораздо более трудны, чем те, которые послужили мне для отрицательных предложений. Поэтому, когда мне надо было доказать, что каждое простое число, которое превосходит на 1 кратное четырех, состоит из <суммы> двух квадратов, я был


Скачать книгу