.
исключением является один из величайших английских математиков Джон Валлис (John Wallis), который после «первого вызова» и ознакомления с задачами Ферма ответил, что они слишком просты и пришлось ему объяснять, что арифметические задачи нужно решать в целых числах. Ситуация изменилась только после «второго вызова» со следующей задачей: «Пусть дано любое неквадратное число, требуется найти бесконечное число квадратов, которые при умножении на данное число и увеличении на единицу составят квадрат». Предлагалось найти решения для чисел 109, 149, и 433 [26]. На этот раз Валлис нашёл решение, применив метод Евклида разложения иррационального числа в бесконечную простую дробь, и даже опубликовал его под названием «Commercium epistolicam». И хотя Валлис и не дал полное доказательства правомерности этого метода, Ферма всё же признал, что с задачей он справился. К решению почти вплотную приблизился Эйлер, когда он показал, что эта дробь цикличная, однако и ему не удалось довести доказательство до конца, и эту задачу в конечном итоге всё-таки решил Лагранж.
Позже уже своим способом эту задачу Ферма решил также Гаусс, но для этого была задействована созданная им обширная теория под названием «Арифметика вычетов». И всё было бы хорошо, если бы доказательство Лагранжа не относилось к категории высшей трудности, а решение Гаусса не опиралось на сложнейшую теорию. Ведь сам Ферма явно не мог следовать ни тем, ни другим путем. О том, как он сам решил эту задачу, он сообщает в письме к Каркави в августе 1659 г. [26]: «Я признаю, что г-н Френикль дал различные частные решения этого вопроса, а также г-н Валлис, но общее решение будет найдено с помощью метода спуска, примененного умело и надлежащим образом». Однако это решение Ферма так и осталось для всех тайной за семью печатями!
12
Очевидно, что если бы речь шла только о формулировке ВТФ, то было бы очень неразумно записывать её на полях книги. Но сетования Ферма на узкие поля повторяются и в других замечаниях, например, в 45-м, в конце которого он добавляет: «Полное доказательство и пространные объяснения не могут поместиться на полях из-за их узости» [26]. А ведь это замечание занимает целую печатную страницу! Конечно, он ничуть и не сомневался, что его гасконский юмор будет оценён по достоинству. Когда его сын Клеман Самюэль, который, естественно, обнаружил несоответствие пометок на полях подготовленным к публикации замечаниям, то совсем этим не был удивлён, поскольку для него было очевидно, что сразу по ходу чтения книги дать точные формулировки задач и теорем совершенно невозможно. То, что этот экземпляр «Арифметики» Диофанта с рукописными пометками Ферма не дошёл до нас наводит на мысль, что уже тогда он был исключительно ценным раритетом, поэтому мог быть куплен другим владельцем за очень высокую цену и тот, конечно, хотя бы ради собственной безопасности не был настолько глуп, чтобы трубить об этом на весь мир.
13
Текст последней фразы ВТФ: «Я открыл тому поистине удивительное доказательство, но эти поля слишком узки, чтобы вместить его здесь», − явно не относится к сути содержания теоремы, однако для многих