The Way To Geometry. Petrus Ramus

The Way To Geometry - Petrus Ramus


Скачать книгу
practises: and therefore here we bring no example of it.

      12. An angle is either right or oblique.

      Thus much of the Affections of an angle; the division into his kindes followeth. An angle is either Right or Oblique: as afore, at the 4 e ij. a line was right or straight, and oblique or crooked.

13. A right angle is an angle whose shankes are right (that is perpendicular) one unto another: An Oblique angle is contrary to this.

      As here the angle aio. is a right angle, as is also oie. because the shanke oi. is right, that is, perpendicular to ae. [The instrument wherby they doe make triall which is a right angle, and which is oblique, that is greater or lesser then a right angle, is the square which carpenters and joyners do ordinarily use: For lengthes are tried, saith Vitruvius, by the Rular and Line: Heighths, by the Perpendicular or Plumbe: And Angles, by the square.] Contrariwise, an Oblique angle it is, when the one shanke standeth so upon another, that it inclineth, or leaneth more to one side, then it doth to the other: And one angle on the one side, is greater then that on the other.

      Therefore,

      14. All straight-shanked right angles are equall.

      [That is, they are alike, and agreeable, or they doe fill the same place; as here are aio. and eio. And yet againe on the contrary: All straight shanked equall angles, are not right-angles.]

      The axiomes of the equality of angles were three, as even now wee heard, one generall, and two Consectaries: Here moreover is there one speciall one of the equality of Right angles.

      Angles therfore homogeneall and recticrurall, that is whose shankes are right, as are right lines, as plaine surfaces (For let us so take the word) are equall right angles. So are the above written rectilineall right angles equall: so are plaine solid right angles, as in a cube, equall. The axiome may therefore generally be spoken of solid angles, so they be recticruralls: Because all semicircular right angles are not equall to all semicircular right angles: As here, when the diameter is continued it is perpendicular, and maketh twice two angles, within and without, the outter equall betweene themselves, and inner equall betweene themselves: But the outer unequall to the inner: And the angle of a greater semicircle is greater, then the angle of a lesser. Neither is this affection any way reciprocall, That all equall angles should bee right angles. For oblique angles may bee equall betweene themselves: And an oblique angle may bee made equall to a right angle, as a Lunular to a rectilineall right angle, as was manifest, at the 6 e.

      The definition of an oblique is understood by the obliquity of the shankes: whereupon also it appeareth; That an oblique angle is unequall to an homogeneall right angle: Neither indeed may oblique angles be made equall by any lawe or rule: Because obliquity may infinitly bee both increased and diminished.

      15. An oblique angle is either Obtuse or Acute.

      One difference of Obliquity wee had before at the 9 e ij. in a line, to witt of a periphery and an helix; Here there is another dichotomy of it into obtuse and acute: which difference is proper to angles, from whence it is translated or conferred upon other things and metaphorically used, as Ingenium obtusum, acutum; A dull, and quicke witte, and such like.

      16. An obtuse angle is an oblique angle greater then a right angle. 11. d j.

      Obtusus, Blunt or Dull; As here aei. In the definition the genus of both Species or kinds is to bee understood: For a right lined right angle is greater then a sphearicall right angle, and yet it is not an obtuse or blunt angle: And this greater inequality may infinitely be increased.

      17. An acutangle is an oblique angle lesser then a right angle. 12. d j.

      Acutus, Sharpe, Keene, as here aei. is. Here againe the same genus is to bee understood: because every angle which is lesse then any right angle is not an acute or sharp angle. For a semicircle and sphericall right angle, is lesse then a rectilineall right angle, and yet it is not an acute angle.

      The fourth Booke, which is of a Figure

      1. A figure is a lineate bounded on all parts.

      So the triangle aei. is a figure; Because it is a plaine bounded on all parts with three sides. So a circle is a figure: Because it is a plaine every way bounded with one periphery.

Figures.

      2. The center is the middle point in a figure.

      In some part of a figure the Center, Perimeter, Radius, Diameter and Altitude are to be considered. The Center therefore is a point in the midst of the figure; so in the triangle, quadrate, and circle, the center is, aei.

Centers of Triangle, Quadrate, And Circle.

      Centrum gravitatis, the center of weight, in every plaine magnitude is said to bee that, by the which it is handled or held up parallell to the horizon: Or it is that point whereby the weight being suspended doth rest, when it is caried. Therefore if any plate should in all places be alike heavie, the center of magnitude and weight would be one and the same.

      3. The perimeter is the compasse of the figure.

      Or, the perimeter is that which incloseth the figure. This definition is nothing else but the interpretation of the Greeke word. Therefore the perimeter of a Triangle is one line made or compounded of three lines. So the perimeter of the triangle a, is eio. So the perimeter of the circle a is a periphery, as in eio. So the perimeter of a Cube is a surface, compounded of sixe surfaces: And the perimeter of a spheare is one whole sphæricall surface, as hereafter shall appeare.

Perimeters.

      4. The Radius is a right line drawne from the center to the perimeter.

      Radius, the Ray, Beame, or Spoake, as of the sunne, and cart wheele: As in the figures under written are ae, ai, ao. It is here taken for any distance from the center, whether they be equall or unequall.

Examples of Radius.

      5. The Diameter is a right line inscribed within the figure by his center.

      As in the figure underwritten are ae, ai, ao. It is called the Diagonius, when it passeth from corner to corner. In solids it is called the Axis, as hereafter we shall heare.

Examples of Diameter.

      Therefore,

      6. The diameters in the same figure are infinite.

      Although of an infinite number of unequall lines that be only the diameter, which passeth by or through the center notwithstanding by the center there may be divers and sundry. In a circle the thing is most apparent: as in the Astrolabe the index may be put up and downe by all the points of the periphery. So in a speare and all rounds the thing is more easie to be conceived, where the diameters are equall: yet notwithstanding in other figures the thing is the same. Because the diameter is a right line inscribed by the center, whether from corner to corner, or side to side, the matter skilleth not. Therefore that there are in the same figure infinite diameters, it issueth out of the difinition of a diameter.

      And

      7. The center of the figure is in the diameter.

      As here thou seest a, e, i this ariseth out of the definition of the diameter. For because the diameter is inscribed into the figure by the center: Therefore the Center of the figure must needes be


Скачать книгу