Termografia i spektrometria w podczerwieni. Отсутствует

Termografia i spektrometria w podczerwieni - Отсутствует


Скачать книгу
natężenia promieniowania rozproszonego. Przez pomiar opóźnienia między wymuszeniem a odpowiedzią optyczną, można wyznaczyć miejsce w światłowodzie o danej wartości temperatury. Systemy tego typu zapewniają pomiar wartości temperatury przy odległościach kilku kilometrów z rozdzielczością liniową kilku metrów. Można uzyskać dokładność pomiaru wartości temperatury na poziomie 1÷2°C.

      Systemy pomiaru temperatury za pomocą długich (kilkukilometrowych) światłowodów noszą nazwę systemów pomiarowych DTS do pomiaru wartości temperatury wzdłuż światłowodu (ang. Distributed Temperature Sensing). Systemy tego typu mogą być stosowane w kopalniach i w instalacjach przemysłowych do wykrywania i przewidywania powstania pożarów. W energetyce systemy DTS używa się do monitorowania wartości temperatury kabli, głównie prowadzonych pod powierzchnią ziemi. Ze względu na optyczny charakter pomiaru, systemy DTS mogą pracować w atmosferach niebezpiecznych i wybuchowych.

      Literatura do rozdziału 1

      [1.1] Altet J., Claeys W., Dilhaire S., Rubio A., Dynamic surface temperature measurements in ICs, Proceedings of the IEEE 94 (8), 2006.

      [1.2] Cheaito R., Gorham C.S., Misra A., Hattar K., Hopkins P.E., Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage, Journal of Materials Research, Journal of Materials Research / Volume 30 / Issue 09 / 2015.

      [1.3] Christofferson J., Yazawa K., Shakouri A., Picosecond transient thermal imaging using a CCD based thermoreflectance system, Proc. 14th International Heat Transfer Conference (IHTC14), Aug. 8–13, Washington DC USA, 2010.

      [1.4] Eriksson P., Andersson J.Y., Stemme G., Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors, Journal of Microelectromechanical Systems, Vol. 6, No. 1, March 1997.

      [1.5] Gaussorgues G., La Thermographie infrarouge, principes, technologies, applications, 3e édition. Paris, Technique et documentation, 1989.

      [1.6] Hecht E., Optics, wyd. 4, Addison Wesley 2002.

      [1.7] Howell J.R., Menguc M.P., Siegel,Thermal Radiation Heat Transfer, 6th Edition, CRC Press, ISBN-13: 978-1466593268, 2016.

      [1.8] Ibrahim R.I., Graphically Selecting Optical Material for Color Correction and Passive Athermalization, Int. Journal of Engineering Research and Applications, www.ijera.com , ISSN: 2248–9622, Vol. 6, Issue 4, (Part-5) April 2016.

      [1.9] ISP Optics Corporation, IR Catalog, 2016.

      [1.10] Kaniewski J., Piotrowski J., InGaAs for Infrared Photodetectors, Physics and Technology, Opto-Electronics Review 12(1), (2004).

      [1.11] Kim Y.S., Kim T.H., Kim G.T., Lim B.T., Lim S.K., Lee H.D., Lee G.W., Uncooled Microbolometer Arrays With High Responsivity Using Meshed Leg Structure, IEEE Photonics Technology Letters vol. 25, nr 21, str. 2108–2110, November 2013.

      [1.12] Kwok-Leung Ch., High Resolution Thermal Imaging For Electrical And Optical Characterization Of Electronic And Photonic Devices, A Dissertation In Mechanical Engineering, University Of Michigan, 2007.

      [1.13] Liu D., Wang J., Liu S., Temperature performance of Raman scattering in a data fiber and its application in a distributed temperature fiber-optic sensor, Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, Robert R. Alfano, Ping-Pei Ho, Arthur E.T. Chiou, Editors, Proceedings of SPIE Vol. 4082 (2000).

      [1.14] Liu W., Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs. New York: Wiley, 1999.

      [1.15] Maher R.C., Cohen L.F., Gallop J.C., Le Ru E.C., Etchegoin P.G., Temperature-Dependent Anti-Stokes/Stokes Ratios under Surface-Enhanced Raman Scattering Conditions, J. Phys. Chem. B, 2006, 110.

      [1.16] Minkina W., Klecha D., Atmospheric transmission coefficient modeling in the infrared for thermovision measurements, Journal of Sensors and Sensor Systems 5, 17–23, doi:10.5194/jsss-5-17-2016, 2016.

      [1.17] Norton P., HgCdTe infrared detectors, Opto-Electronics Review, 10 (3), (2002).

      [1.18] Packard R.D., Mercury cadmium telluride as a 1–20 microns wavelength infrared detector for space applications, AIAA Journal, Vol. 7, No. 8 (1969).

      [1.19] Palik E.D. (red.), Handbook of Optical Constants of Solids. Academic Press, Inc., 1985.

      [1.20] Pearsall T.P, Ga0,47In0,53As. A ternary semiconductor for photodetector applications, IEEE Journal of Quantum Electronics, vol. QE-16 No. 7, 1980.

      [1.21] PN-90/E-01005 Technika świetlna. Terminologia.

      [1.22] Potkay J.A., Lambertus G.R., Sacks R.D., Wise K.D., A low pressure-and temperature-programmable mGC column, Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, SC, USA, June 2006.

      [1.23] Rogalski A., HgCdTe infrared detector material: history, status and outlook, Institute of Physics Publishing, Rep. Prog. Phys.68 (2005).

      [1.24] Rogalski A., Infrared Detectors, Second Edition, CRC Press, 2010.

      [1.25] Rogers P.J., Athermalized FLIR optics. Proc. SPIE 1354, 742 – 751 (1990).

      [1.26] Roland U.,  Renschen C.P.,  Lippik D., Stallmach F., Holzer F., A New Fiber Optical Thermometer and Its Application for Process Control in Strong Electric, Magnetic, and Electromagnetic Field, Sensor Letters, Volume 1, Number 1, December 2003.

      [1.27] Rothman L.S., Jacquemart D., Barbe A., Benner D.Ch. et all, The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 96 (2005) pp. 139–204.

      [1.28] Schmidt A.J., Cheaito R., Chiesa M., A frequency-domain thermoreflectance method for the characterization of thermal properties Review Of Scientific Instruments 80, 094901, 2009.

      [1.29] Siegel R., Howell J.R., Thermal Radiation Heat Transfer, 3rd ed., Taylor and Francis, Hemisphere Publishing Corporation, ISBN 0-89116-271-2, 1992.

      [1.30] Strąkowski R., Strąkowska M., Więcek B., Metrologiczna kamera termowizyjna z detektorem mikrobolometrycznym VOx, PAK, vol. 57, nr 10/2011.

      [1.31] Swaminathan V., Macrander A.T., Materials Aspects of GaAs and InP based Structures. Prentice-Hall, Inc. Upper Saddle River, NJ, USA 1991.

      [1.32] Vermeersch B., Thermal AC modelling, simulation and experimental analysis of microelectronic structures including nanoscale and high-speed effect, rozprawa doktorska, Uniwersytet w Gandawie, ELIS, Belgia, promotor G. De Mey, 2009.

      [1.33] Więcek B., De Mey G., Termowizja w podczerwieni, podstawy i zastosowania, Wydawnictwo PAK, 2011.

      [1.34] Więcek P., Zgraja J., Sankowski D., Automatic adjustment of integration time in the NIR camera for calibrated temperature measurement during inductive heating processes, Conf. Proc. Quantitative Infrared Thermography Conf. QIRT, 2016, Gdańsk, July 4–7, 2016.

      [1.35] Yazawa K., Kendig D., Raad P.E., Komarov P.L., Shakouri A., Understanding The Thermoreflectance Coefficient For High Resolution Thermal Imaging of Microelectronic Devices, Electronic Cooling, March 8th, 2013.

      2

      Metodyka prowadzenia badań termowizyjnych

      Bogusław Więcek

      Wyznaczenie wartości temperatury obiektu wynika wprost z równania (1.45). W systemie komputerowym kamery termowizyjnej jest wyznaczana wartość cyfrowa sygnału, odpowiadająca ciału czarnemu, które ma tę samą wartość temperatury, co badany obiekt. Sygnał wyjściowy detektora kamery jest wartością cyfrową, odpowiadającą mocy promieniowania obiektu absorbowanego przez detektor w zakresie charakterystyki widmowej absorpcji. Często sygnał ten wyraża się w tzw. jednostkach izotermicznych IU (ang. Isothermal Units) lub cyfrowych DL (ang. Digital


Скачать книгу