Six Lectures on Light. Delivered In The United States In 1872-1873. John Tyndall
to various phenomena of optics, by the illustrious astronomer, Huyghens. He deduced from it the laws of reflection and refraction, and applied it to explain the double refraction of Iceland spar. The theory was espoused and defended by the celebrated mathematician, Euler. They were, however, opposed by Newton, whose authority at the time bore them down. Or shall we say it was authority merely? Not quite so. Newton's preponderance was in some degree due to the fact that, though Huyghens and Euler were right in the main, they did not possess sufficient data to prove themselves right. No human authority, however high, can maintain itself against the voice of Nature speaking through experiment. But the voice of Nature may be an uncertain voice, through the scantiness of data. This was the case at the period now referred to, and at such a period, by the authority of Newton, all antagonists were naturally overborne.
The march of mind is rhythmic, not uniform, and this great Emission Theory, which held its ground so long, resembled one of those circles which, according to your countryman Emerson, the intermittent force of genius periodically draws round the operations of the intellect, but which are eventually broken through by pressure from behind. In the year 1773 was born, at Milverton, in Somersetshire, a circle-breaker of this kind. He was educated for the profession of a physician, but was too strong to be tied down to professional routine. He devoted himself to the study of natural philosophy, and became in all its departments a master. He was also a master of letters. Languages, ancient and modern, were housed within his brain, and, to use the words of his epitaph, 'he first penetrated the obscurity which had veiled for ages the hieroglyphics of Egypt.' It fell to the lot of this man to discover facts in optics which Newton's theory was incompetent to explain, and his mind roamed in search of a sufficient theory. He had made himself acquainted with all the phenomena of wave-motion; with all the phenomena of sound; working successfully in this domain as an original discoverer. Thus informed and disciplined, he was prepared to detect any resemblance which might reveal itself between the phenomena of light and those of wave-motion. Such resemblances he did detect; and, spurred on by the discovery, he pursued his speculations and experiments, until he finally succeeded in placing on an immovable basis the Undulatory Theory of Light.
The founder of this great theory was Thomas Young, a name, perhaps, unfamiliar to many of you, but which ought to be familiar to you all. Permit me, therefore, by a kind of geometrical construction which I once ventured to employ in London, to give you a notion of the magnitude of this man. Let Newton stand erect in his age, and Young in his. Draw a straight line from Newton to Young, tangent to the heads of both. This line would slope downwards from Newton to Young, because Newton was certainly the taller man of the two. But the slope would not be steep, for the difference of stature was not excessive. The line would form what engineers call a gentle gradient from Newton to Young. Place underneath this line the biggest man born in the interval between both. It may be doubted whether he would reach the line; for if he did he would be taller intellectually than Young, and there was probably none taller. But I do not want you to rest on English estimates of Young; the German, Helmholtz, a kindred genius, thus speaks of him: "His was one of the most profound minds that the world has ever seen; but he had the misfortune to be too much in advance of his age. He excited the wonder of his contemporaries, who, however, were unable to follow him to the heights at which his daring intellect was accustomed to soar. His most important ideas lay, therefore, buried and forgotten in the folios of the Royal Society, until a new generation gradually and painfully made the same discoveries, and proved the exactness of his assertions and the truth of his demonstrations."
It is quite true, as Helmholtz says, that Young was in advance of his age; but something is to be added which illustrates the responsibility of our public writers. For twenty years this man of genius was quenched—hidden from the appreciative intellect of his country-men—deemed in fact a dreamer, through the vigorous sarcasm of a writer who had then possession of the public ear, and who in the Edinburgh Review poured ridicule upon Young and his speculations. To the celebrated Frenchmen Fresnel and Arago he was first indebted for the restitution of his rights; for they, especially Fresnel, independently remade and vastly extended his discoveries. To the students of his works Young has long since appeared in his true light, but these twenty blank years pushed him from the public mind, which became in time filled with the fame of Young's colleague at the Royal Institution, Davy, and afterwards with the fame of Faraday. Carlyle refers to a remark of Novalis, that a man's self-trust is enormously increased the moment he finds that others believe in him. If the opposite remark be true—if it be a fact that public disbelief weakens a man's force—there is no calculating the amount of damage these twenty years of neglect may have done to Young's productiveness as an investigator. It remains to be stated that his assailant was Mr. Henry Brougham, afterwards Lord Chancellor of England.
§ 4. Wave-Motion, Interference of Waves, 'Whirlpool Rapids' of Niagara
Our hardest work is now before us. But the capacity for hard work depends in a great measure on the antecedent winding up of the will; I would call upon you, therefore, to gird up your loins for coming labours.
In the earliest writings of the ancients we find the notion that sound is conveyed by the air. Aristotle gives expression to this notion, and the great architect Vitruvius compares the waves of sound to waves of water. But the real mechanism of wave-motion was hidden from the ancients, and indeed was not made clear until the time of Newton. The central difficulty of the subject was, to distinguish between the motion of the wave itself, and the motion of the particles which at any moment constitute the wave.
Stand upon the seashore and observe the advancing rollers before they are distorted by the friction of the bottom. Every wave has a back and a front, and, if you clearly seize the image of the moving wave, you will see that every particle of water along the front of the wave is in the act of rising, while every particle along its back is in the act of sinking. The particles in front reach in succession the crest of the wave, and as soon as the crest is past they begin to fall. They then reach the furrow or sinus of the wave, and can sink no farther. Immediately afterwards they become the front of the succeeding wave, rise again until they reach the crest, and then sink as before. Thus, while the waves pass onwards horizontally, the individual particles are simply lifted up and down vertically. Observe a sea-fowl, or, if you are a swimmer, abandon yourself to the action of the waves; you are not carried forward, but simply rocked up and down. The propagation of a wave is the propagation of a form, and not the transference of the substance which constitutes the wave.
The length of the wave is the distance from crest to crest, while the distance through which the individual particles oscillate is called the amplitude of the oscillation. You will notice that in this description the particles of water are made to vibrate across the line of propagation.10
And now we have to take a step forwards, and it is the most important step of all. You can picture two series of waves proceeding from different origins through the same water. When, for example, you throw two stones into still water, the ring-waves proceeding from the two centres of disturbance intersect each other. Now, no matter how numerous these waves may be, the law holds good that the motion of every particle of the water is the algebraic sum of all the motions imparted to it. If crest coincide with crest and furrow with furrow, the wave is lifted to a double height above its sinus; if furrow coincide with crest, the motions are in opposition and their sum is zero. We have then still water. This action of wave upon wave is technically called interference, a term, to be remembered.
Fig. 10.
To the eye of a person conversant with these principles, nothing can be more interesting than the crossing of water ripples. Through their interference the water-surface is sometimes shivered into the most beautiful mosaic, trembling rhythmically as if with a kind of visible music. When waves are skilfully generated in a dish of mercury, a strong light thrown upon the shining surface, and reflected on to a screen, reveals the motions of the liquid metal. The shape of the vessel determines the forms of the figures produced. In a circular dish, for example, a disturbance at the centre propagates itself as a series of circular waves, which, after reflection, again meet at the centre. If the point of disturbance be a little way removed from the centre, the interference of the direct and reflected waves produces the
10
I do not wish to encumber the conception here with the details of the motion, but I may draw attention to the beautiful model of Prof. Lyman, wherein waves are shown to be produced by the