Исследуем. Проектируем. Предлагаем. Сборник статей
в природе может быть описано в терминологии математических принципов, которые свойственны этим формам.
Геометрические фигуры – конкретное воплощение чисел. Числа принадлежат к миру принципов, и они становятся геометрическими фигурами, нисходя в физический план. Например, число 4 связывается с квадратом, 5 – с пентаграммой, 3 – с треугольником, 2 – с углом, 1 – с точкой или линией. Такая абстрактная величина, как число, на определенном этапе развития самосознания человека начинает пониматься органически и геометрически.
1.2. Анализ степени изученности и научной разработанности данной темы
Интересные работы, связанные с нумерологическим представлением таблицы умножения и абрисами первоцифр, можно найти в работах А. А. Корнеева на его сайте, созданном в начале двухтысячных годов под названием «Числонавтика». Так, в одной из статей утверждается, что таблица умножения является «цифровым отображением топологической операции продольного разрезания ленты Мебиуса на три части».
Еще одно серьезное исследование я нашел у кандидата физико-математических наук В. Б. Творогова, который запатентовал свое изобретение в 1999 году как «Вращающаяся таблица умножения/деления размером (w х w), где w = 3(mod10) или w = 7(mod10)». Это устройство в основном варианте реализации имеет две параллельные расположенные рядом неподвижные плоскости и вращающийся круг между ними. На плоскостях нарисованы квадратные матрицы с ячейками и общей осью вращения. Таблицы на поворотной плоскости позволяют получить результат умножения способом поворота круга относительно неподвижных плоскостей вокруг оси, проходящей через центры таблиц.
Описание механизма мне показалось сложным, вследствие чего я так и не смог представить принцип его работы. Также я понял, что в устройстве есть определенная сложность с вычислением десятков результата. Так, в описании изобретения есть фразы, говорящие о необходимости проведения дополнительных операций методом устного счета: «сбоку в каждом ряду, кроме первого, сделаны прорези для вспомогательного числа vi, используемого для устных вычислений десятков».
Таким образом, моей целью стало создание понятного теоретического и практического материала, который бы мог использоваться на уровне школьных занятий, а принцип работы устройства подходил и для массового использования.
1.3. Приведение таблицы умножения к ее нумерологическому виду и анализ полученного результата
Давайте вспомним, как строится всем известная таблица умножения (таблица Пифагора). Для ее представления необходимо построить квадрат, в левом столбце и в верхней строке которого идут числа от 1 до 9. Умножая каждое число из верхней строки на каждое число из левого столбца и записывая результат на пересечении, мы получим квадрат, состоящий из 81 клетки. Таким образом, мы видим в каждой клетке таблицы результат умножения чисел из левого столбца и верхней строки.
Теперь приведем таблицу умножения к нумерологическому квадрату (см. рис.). Для этого числа в каждой ячейке таблицы необходимо нумерологически сократить, т. е. преобразовать с помощью сложения