Квант. Джим Аль-Халили
более точной информации, чем сообщение о том, где может находиться электрон. Конечно, прочитав это, вы все равно ничего не поняли. Поэтому я постараюсь объяснить лучше.
Волновая функция содержит большое количество информации. В любой момент времени она обладает значением для каждой точки в пространстве. Так что, в отличие от положения в пространстве классической частицы, волновая функция распространяется на все пространство – отсюда и термин «волновая». Но не стоит думать, будто она представляет собой настоящую физическую волну наподобие волны света. Тут я должен признаться, что на самом деле никто не знает, что такое волновая функция. Большинство физиков считает ее абстрактной математической сущностью, которую можно использовать для получения информации о природе. Другие относят ее к ее собственной, очень странной отдельной реальности. В шестой главе мы увидим, что обе эти точки зрения могут быть одинаково справедливы. Как ни странно, важнее всего, что, вне зависимости от того, реальна волновая функция или нет, ее математические свойства остаются неизменными, а в том, что она может сообщить нам о поведении природы на субатомном уровне, нет никаких сомнений.
Давайте в качестве примера возьмем единственный электрон, заключенный в коробку. Представим, что мы точно знаем его изначальное положение, и введем эту информацию в уравнение Шрёдингера. Таким образом мы сможем рассчитать его волновую функцию для более позднего момента. Теперь давайте представим, что мы ввели в компьютерный файл или записали на бумаге массив чисел, которые представляют собой значения волновой функции электрона для разных точек сетки внутри коробки. Использовать эту информацию, чтобы с некоторой степенью уверенности определить местоположение электрона, мы уже не сможем. Вместо этого нам придется довольствоваться знанием того, где он окажется с наивысшей степенью вероятности. Это делается следующим образом.
Волновая функция описывает каждую точку пространства двумя числами. Вероятность того, что электрон находится в непосредственной близости от этой точки, представляет собой сумму квадратов этих чисел[17]. Я говорю это, чтобы вы поняли, что сама по себе волновая функция не является вероятностью, сначала ее надо возвести в квадрат[18].
Вероятность распределения электрона, заключенного в коробке. Это не физическое облако, описывающее «размазанный» электрон, а математическое облако вероятности. Если мы знаем наверняка, что электрон изначально находился в одном из верхних углов коробки, то его волновая функция вскоре распространится на весь объем коробки. Однако большая плотность вероятностного облака, рассчитанная на основании волновой функции, скажет нам, что электрон до сих пор, скорее всего, будет найден в непосредственной близости от своего изначального местоположения. С течением времени вероятностное облако распределится более равномерно, и электрон можно будет с равной вероятностью найти в любой точке коробки.
Вероятностная
17
Математически это объясняется тем, что волновая функция представляет собой так называемую «сложную функцию», а следовательно, обладает как «действительной», так и «мнимой» частью, но вдаваться в подробности я не буду.
18
Заранее не угадаешь, когда у тебя в руках окажется волновая функция. Будет обидно не знать, что с ней делать.