Теорема века. Мир с точки зрения математики. Анри Пуанкаре

Теорема века. Мир с точки зрения математики - Анри Пуанкаре


Скачать книгу
присущи не только нам, но и самой природе. Они, так сказать, ставят границы свобод творца и позволяют ему делать выбор только между несколькими относительно немногочисленными решениями. Тогда нескольких опытов будет достаточно, чтобы раскрыть нам, какой выбор им сделан. Из каждого опыта с помощью ряда математических дедукций можно вывести множество следствий, и таким образом каждый из них позволит нам познать некоторый уголок Вселенной.

      Вот в таком виде представляется широкой публике или учащимся, получающим первые познания по физике, происхождение научной достоверности. Так они понимают роль опыта и математики. Так же понимали ее сто лет тому назад и многие ученые, мечтавшие построить мир, заимствуя из опыта возможно меньше материала.

      Но, вдумавшись, заметили, что математик, а тем более экспериментатор, не может обойтись без гипотезы. Тогда возник вопрос, достаточно ли прочны все эти построения, и явилась мысль, что при малейшем дуновении они могут рухнуть. Быть скептиком такого рода значит быть только поверхностным. Сомневаться во всем, верить всему – два решения, одинаково удобные: и то и другое избавляет нас от необходимости размышлять.

      Итак, вместо того чтобы произносить огульный приговор, мы должны тщательно исследовать роль гипотезы; мы узнаем тогда, что она не только необходима, но чаще всего и законна. Мы увидим также, что есть гипотезы разного рода: одни допускают проверку и, подтвержденные опытом, становятся плодотворными истинами; другие, не приводя нас к ошибкам, могут быть полезными, фиксируя нашу мысль; наконец, есть гипотезы, только кажущиеся таковыми, но сводящиеся к определениям или к замаскированным соглашениям.

      Последние встречаются главным образом в науках математических и соприкасающихся с ними. Отсюда именно и проистекает точность этих наук; эти условные положения представляют собой продукт свободной деятельности нашего ума, который в этой области не знает препятствий. Здесь наш ум может утверждать, так как он здесь предписывает; но его предписания налагаются на нашу науку, которая без них была бы невозможна, они не налагаются на природу. Однако произвольны ли эти предписания? Нет; иначе они были бы бесплодны. Опыт предоставляет нам свободный выбор, но при этом он руководит нами, помогая выбрать путь, наиболее удобный. Наши предписания, следовательно, подобны предписаниям абсолютного, но мудрого правителя, который советуется со своим государственным советом.

      Некоторые были поражены этим характером свободного соглашения, который выступает в некоторых основных началах наук. Они предались неумеренному обобщению и к тому же забыли, что свобода не есть произвол. Таким образом, они пришли к тому, что называется номинализмом, и пред ними возник вопрос, не одурачен ли ученый своими определениями и не является ли весь мир, который он думает открыть, простым созданием его прихоти[1]. При таких условиях наука была бы достоверна, но она была бы лишена значения.

      Если бы это было так, наука была бы бессильна. Но мы постоянно видим перед своими глазами ее плодотворную работу. Этого не могло бы быть, если бы она не открывала нам чего-то реального; но то, что она может постичь, не суть вещи в себе, как думают наивные догматики, а лишь отношения между вещами; вне этих отношений нет познаваемой действительности.

      Таково заключение, к которому мы придем; но для этого нам придется подвергнуть беглому обзору ряд наук от арифметики и геометрии до механики и экспериментальной физики.

      Какова природа умозаключения в математике? Действительно ли она дедуктивна, как думают обыкновенно? Более глубокий анализ показывает нам, что это не так, – что в известной мере ей свойственна природа индуктивного умозаключения и потому-то она столь плодотворна. Но от этого она не теряет своего характера абсолютной строгости, что прежде всего мы и покажем.

      Познакомившись ближе с одним из орудий, которые математика дает в руки естествоиспытателя, мы обратимся к анализу другого основного понятия – понятия математической величины. Находим ли мы ее в природе или сами вносим ее в природу? И в последнем случае не подвергаемся ли мы риску все извращать? Сличая грубые данные наших чувств и то крайне сложное и тонкое понятие, которое математики называют величиной, мы вынуждены признать их различие; следовательно, эту раму, в которую мы хотим заключить все, создали мы сами; но мы создали ее не наобум, мы создали ее, так сказать, по размеру и потому-то мы можем заключать в нее явления, не искажая в существенном их природы.

      Другая рама, которую мы налагаем на мир, – это пространство. Откуда происходят первоначальные принципы геометрии? Предписываются ли они логикой? Лобачевский, создав неевклидовы геометрии, показал, что нет. Не открываем ли мы пространства при помощи наших чувств? Тоже нет, так как то пространство, которому могут научить нас наши чувства, абсолютно отлично от пространства геометра. Проистекает ли вообще геометрия из опыта? Глубокое исследование покажет нам, что нет. Мы заключим отсюда, что эти принципы суть положения условные; но они не произвольны, и если бы мы были перенесены в другой мир (я называю его неевклидовым миром и стараюсь изобразить его), то мы остановились бы на других положениях.

      В механике мы


Скачать книгу

<p>1</p>

См. Le Roy. Science et Philosophie // Revue de Métaphysique et de Morale. 1901.