The Physical Basis of Mind. George Henry Lewes

The Physical Basis of Mind - George Henry Lewes


Скачать книгу
nutrient material on its way to form Protoplasm, which is formative material; while the materials formed may be termed Organites and Products: the organite being the cell or cell-derivative (fibre, tube); the products being the gaseous liquid and solid derivatives of vital processes, which are secretions when they form intercellular substance or return into the plasmode and re-enter the vital circle; excretions when they are rejected, as incapable of further assimilation. The liver-cell will furnish an example of each kind of product. The bile, though containing principles serviceable in the chemical transformations, is for the most part excreted; but besides bile, the liver-cell produces starchy and saccharine principles which are true secretions, and re-enter the plasmode.

      61. The organite is thus composed of sap, substance, and product; the organism, of plasmode, tissue, and product. A glance at the vegetable-cell shows it to be constituted by the primordial utricle, or protoplasm, the outermost layer of which is condensed into a membrane, or cell-wall, and the cavity thus enclosed is filled with sap. The cell-wall grows as the protoplasm grows, and the protoplasm draws its material from the plasmode. A glance at the blood, the great reservoir of the river of life, shows us plasmode in the serum, and organites in the corpuscles; the one distinguished by sodic salts, the other by potassic salts. The plasmode, or serum, is in a constant change of composition and decomposition, giving up to the various tissue-organites and intercellular plasmodes the requisite materials, and receiving from organites and plasmodes the products of their changes. The serum is fed from the food and the tissues; and it feeds the several plasmodes which bathe the several tissues. Passing into the capillaries, it becomes transformed as it passes through their walls into the intercellular spaces, saturating the acid products of the cell-activities with its alkalies, and furnishing the protoplasms with their needed materials.

      62. It will be understood that, although in appearance these stages are sharply defined, in reality they are insensible. But from the analytical point of view we may regard Nutrition as the office of the plasmode, and Evolution as the office of the protoplasm. Although evolution or genesis of form depends on assimilation, it is not a necessary consequence: the plasmode or the protoplasm might preserve such perfect equality in the waste and repair, such complete equilibrium, as not to undergo any development. The ova, for example, which exist in the ovaries at birth are not all subsequently developed; and if with modern embryologists we conclude that there is no replacement of these by proliferation we shall in them have examples of organites remaining unchanged through a period of fifty years.21 But such an equilibrium is perhaps only possible in complete inactivity.

       63. Again, although the office of the plasmode is primarily that of forming protoplasm, I think there is evidence to suggest that it not only does this, but that some of it is used in the direct development of energy, especially heat and electricity. The various forms of starch and sugar taken in with the food or formed in the liver, certainly do not as such enter into protoplasm. The same with alcohol.

      64. It is perhaps in forgetfulness of the artificial nature of analytical distinctions that controversies rage respecting what are called intercellular substances and cell-walls. Now that the wall is no longer regarded as an essential constituent of the cell, but as a secondary formation, two opinions are maintained: first, that it is merely a concentration of the external layer of protoplasm; secondly, that it is a product of secretion from the protoplasm. Both positions may be correct. Certainly in some cases there is no other appreciable difference between wall and protoplasm than that of a greater consistence; whereas in many other cases there exists a decided difference in their chemical reactions, showing a difference of composition. Taking both orders of fact, we may conclude that the cell-wall is sometimes part of the organite, and sometimes product: a blood-cell and a cartilage-cell may be cited as examples of each. And this argument applies to the intercellular substance also.

      65. The terms plasmode and protoplasm are general, and include many species. There are different plasmodes for the different tissues, so that we find phosphates of soda in the blood-serum, phosphates of potash in the nerve-plasma, phosphates of magnesia in the muscle-plasma, and phosphates of lime in the bone-plasma; having severally to form the specifically different protoplasms of these tissues. Observe, moreover, the gradations of these in respect of their physical state: the blood being the most liquid, the nerve a degree more solid, the muscle still more solid, and the bone almost entirely solid; and since solubility of material is a necessary condition of the chemical changes, we can understand how the blood, the nerve, the muscle, and the bone represent degrees of vital activity: the greater the instability of organized substance, the more active its molecular renovation. Many serious errors result from overlooking the specific differences of protoplasms; among them may be mentioned that very common one of asserting that the ovum of a man is not distinguishable from the ovum of any other mammal, nor the ovum of a mammal from that of a reptile; nay, we sometimes see it stated that the protoplasm from which a mammal may be developed is the same as that which is the germ of an oak. So long as this simply asserts that we have at present no means of distinguishing them by any chemical or physical tests, there can be no objection raised; but it is a serious misconception, which any embryological investigation ought to rectify, to suppose that the ovum is not specific from the first.

      66. Between the organites and their plasmodes there is the necessary relation, which corresponds with the relation between organisms and their mediums. Once formed, the organites are arranged side by side, or end on end, into textures or tissues, and these are grouped into organs, every organ being constituted by a collection of tissues, as every apparatus is by a collection of organs, and the organism by the federation of all the parts. We have more than once insisted on the necessity of synthetic interpretation to complete the indications of analysis: which means that no account of vital phenomena is real unless it takes in all the co-operant factors, both those of the organism and the medium. Neglect of this canon vitiates Dr. Beale’s otherwise remarkable labors.

       Table of Contents

      67. It may help to elucidate certain important points if I here examine the hypothesis which Dr. Beale has worked out with such patient skill, but with what seem to me such unphysiological results. He deserves, I think, more applause than has been awarded to him, not only for the admirable patience with which he has pursued the idea, but also for the striking definiteness of the idea itself—always a great advantage in an hypothesis, since it gives precision to research. If biologists have paid but little attention to it, this is no doubt due to the theoretical, still more than to the observational contradictions it presents. Histologists dispute his facts, or his interpretations; while other biologists do not see their way in the application of his hypothesis. Respecting all disputed points of observation I shall be silent, for I have myself made no systematic researches in this direction, such as would entitle me to form an estimate of the evidence. But my dissent from the hypothesis is founded on biological principles so fundamental that I should be willing to take my stand entirely on the facts he himself puts forward.22

      68. The hypothesis is that nothing in the organism has any claim to vitality except the minute masses of protoplasm (by him called bioplasm), which in the egg represent, he thinks, about the one-thousandth part of the whole mass, the rest being lifeless matter, namely, pabulum, and formed material. This bioplasm is the germinal matter out of which, by a process of dying, arise the tissues and humors constituting the formed material—these, with the pabulum which feeds the germinal matter, being all dead material. The germinal matter itself, though living, only lives because there is temporarily associated with it that Vital Force of which we have already spoken (§ 14). In virtue of this association, a particle of matter not exceeding the one hundred-thousandth of an inch in diameter is said to be alive; and, presumably, to contain within it all those manifold powers which the term Life condenses. The pabulum brought under the influence of this Vital Force is transformed into germinal matter which, escaping from this mysterious influence, dies into tissue. Muscle-fibres and nerve-fibres are thus not living parts, nor are their actions vital. So that, to be consistent, we must not speak of the organism as living, but as a dead


Скачать книгу