В поисках общей теории роста человечества. Анатолий Васильевич Молчанов
непричинную связь между ее численностью и естественным приростом. Т. е. представлять собой не более, чем регрессионную зависимость, не претендующую на какой-либо каузальный смысл.
Возможна такая механическая аналогия. Малые свободные колебания математического маятника – колебания гармонические. Если приложить к нему вынуждающую силу, меняющуюся со временем, колебания станут вынужденными. Если вынуждающая сила мала, то вдали от резонанса вынужденные колебания будут мало отличаться от свободных. Если же внешнее возмущающее воздействие велико, то закон движения маятника может быть в принципе каким угодно в пределах, которые определяются массой груза, длиной нити и силами трения.
Итак, рост популяции может быть как свободным, так и управляемым. Управляемый рост отличается от свободного наличием управляющей системы, стоящей над популяцией и способной изменять ее свободный рост в тех границах, которые определены биотическим потенциалом популяции и сопротивлением среды.
Например, превратить естественный экспоненциальный рост в рост гиперболический. Поскольку управляемый рост может быть осуществлен только достаточно сложной системой управления, как минимум обладающей памятью, то момент детерминации может быть расположен здесь позднее во времени того момента, когда происходит детерминированное событие.
Понимать это надо так: управляющая система непрерывно контролирует текущую численность популяции и воздействует на внутрипопуляционные связи таким образом, чтобы сделать максимально вероятной последовательность ранжированных событий, каждое из которых заключается в достижении численности популяции в определенный момент времени в будущем некоторого предустановленного значения.
Задача каузального анализа в таком случае заключается в том, чтобы найти целевой, телеологический каузальный закон, управляющий ростом, и механизм его реализации.
Модель степенного роста, или рассказ о том, как не растут популяции
Закон степенного роста (убывания) какой-либо величины во времени – это зависимость вида y = C(t – t0)n, где показатель n не равен нулю или единице и может быть положительным, отрицательным, целым или дробным.
Может ли численность роста какой-либо популяции на каком-то этапе своего роста описываться степенным законом? Это возможно лишь при том условии, что на этом этапе прирост численности за небольшой промежуток времени будет пропорционален некоторой степени численности, причем показатель этой степени не должен быть равен единице.
В таком случае вопрос можно сформулировать так: может ли скорость роста численности популяции выражаться в виде степенного закона (3) рис. 1?
Рис. 1. Степенной и экспоненциальный законы роста численности популяции.
При разных значениях параметра m закон (3) описывает параболический, экспоненциальный и гиперболический рост. Возьмем