Animal Ethos. Lesley A. Sharp

Animal Ethos - Lesley A. Sharp


Скачать книгу
capital … or by the way in which they become integrated into the social fabric of human society” (2012, 162).22 Refinements to this definition—reminiscent of Benedict’s dualism and Wilson’s temporality—recognize domestication as a “mutualistic relationship, in which both partners, human and domesticate, reap the benefits” in “codependent relationships” (2012, 162).23 For Zeder, domestication is “a sustained, multigenerational, mutualistic relationship” that affects “both the domesticate and the human side of the equation”; furthermore, it “is a fluid and nonlinear process that may start, stop, reverse course, or go off on unexpected tangents, with no clear or universal threshold that separates the wild from the domestic” (2012, 162–63, 166). As an archaeologist, Zeder is unconcerned with contemporary laboratory research. Nevertheless, her assertions offer an intriguing framework for rethinking human-animal relations in science. Following Zeder, I argue that lab animals, if they are to be successful research subjects, must undergo specialized processes akin to domestication. This occurs on several fronts.

      First, species choice and preference permeate the logic of domestication within laboratories. According to Zeder, “certain behavioral characteristics make certain animal taxa, and certain individuals within taxa, better candidates for domestication than others” and “it is [those] sets of behaviors … with the responses of animals to humans and new environments—that are particularly important in animal domestication” (2012, 165, 167; see also her chart on 166). Similarly, researchers often explain that laboratory life comes naturally to or is better suited to some species than others, and, as lab domesticates, some are even described as docile yet eager participants. This logic works on two registers at once: by their very nature and temperament, certain species—such as mice, rats, beagles, and macaques—are understood as adapting especially well to laboratory conditions because, for instance, they enjoy or do not mind human presence, they might be unaggressive with humans or others of their own kind, they can live and thrive in confined conditions, or they reproduce with ease in captivity. In addition, some species are described as not only tolerating but enjoying experimental tasks and procedures, work that some go so far as to consider a form of “enrichment.” (I address the ramifications of this in the next chapter.)

      Second, “mutualism” allows for the possibility that both humans and animals, as codependent partners, willingly participate in and reap the benefits of lab domestication, and a common assertion is that laboratory life is superior to a natural one. That is, whereas food, shelter, and safety mount significant challenges in the wild, lab-based welfare practices ensure that animals are provided these basic needs. An associated trope is that lab animals live longer than their wild or feral counterparts (although this statement overlooks the ubiquity of lab-based euthanasia practices). In addition, a logic that legitimates animal experimentation is that both humans and animals profit from successful discoveries and outcomes. Indeed, perhaps the greatest frustration expressed in interviews with laboratory staff is how little recognition their work garners in the world at large, even though a plethora of reliable medical procedures and pharmaceutical advancements relevant to both human and animal clinical care have been made possible by animal research.24 In this sense, mutualism is imagined as a black box of lifesaving work that is nevertheless obscured from public view.

      Third, domestication often involves the deliberate transformation of a species, a process Zeder labels “intentionality,” and evidenced, for instance, in the selective breeding of livestock (2012, 163). Research personnel often explain that experimental animals bear little in common with their wild, feral, farm-bred, or household counterparts. Lab science relies heavily on meticulous, highly calibrated, and often deeply bureaucratized processes designed to alter the nature of a species through selective breeding, gene splicing, and the regular culling of unfit offspring by lab researchers, animal technicians of in-house vivaria, and staff at commercial breeding facilities known colloquially as “vendors,” who often specialize in patented animals. These selective transformative efforts “render” (Shukin 2009) animals into viable forms of research biocapital (Franklin and Lock 2003).

      As such examples reveal, human-animal relations in science are indeed, as Zeder asserts for other contexts, dyadic, cooperative, mutable, fluid, and capable of transforming both animal and human participants. As she reminds us, domestication is neither a static event nor a state of being; rather, it “is a fluid and nonlinear process that may start, stop, reverse course, or go off on unexpected tangents, with no clear or universal threshold that separates the wild from the domestic” (2012, 166). Disciplines, too, display species preferences: whereas archaeologists’ analyses of domestication most often focus on ungulates (including horses, cattle, llama, reindeer, sheep, etc.), dogs, pigs, and fowl, many contemporary lab scientists are engaged with rodents, NHPs, dogs, and pigs.25

      The research mouse is the quintessential example of the laboratory domesticate. As Lisa Raines has documented, lab mice were derived initially from wild field mice and subsequently refined by mouse fanciers (most notably through the efforts of Abbie Lathrop of Granby, Massachusetts, who bred mice—alongside other animals such as ferrets and guinea pigs—for mouse fanciers and, in turn, laboratory researchers) (Raines 1991; Shimkin 1975). Today a plethora of strains are available for purchase from specialized, licensed vendors, as demonstrated by their supply catalogues. One need only consult a web page entitled “Find a Model” of Charles River Laboratories—among the largest suppliers of laboratory rodents in the United States—to encounter an impressive catalogue of mice bearing such names as NIH-III Nude, 129-Elite, B6 Albino, GLUT4, RIP-HAT, THE POUND MOUSE® and Immortomouse®. These are highly specialized genetic mouse strains fashioned for applications in immunologic, transgenic, xenotransplant, cancer, fertility, diabetes, or obesity research.26 Similarly, a competitor, Jackson Labs, produces its own strains of JAX® Mice, offering specialized “portfolios” for cancer transplantation, metabolic, and lupus research.27 In each case, domestication is most certainly driven by, in Zeder’s words, the “intentionality” to transform animals into “productive capital” through selective breeding and genetic manipulation, so that humans indeed assume “a significant level of control” over the reproduction of “resource” animals (2012, 163).

      Finally, domesticates have histories. Whereas the archaeologist frequently maps the incorporation of dogs and horses into human societies, lab scientists construct very similar narratives that legitimate the human use of other species. In other words, human-animal partnerships in a range of contexts inspire narratives of natural coevolution. Zeder, for instance, describes the dog as “a classic example of a domestic animal that likely traveled a commensal pathway into domestication” (2012, 172). Yet, as lab narratives attest, one might easily replace the dog with the laboratory mouse. Consider this overview from a widely circulated guide to rodent colony management that can be found on the bookshelves of many laboratories:

      Laboratory mice and rats are domesticated animals, as a comparison with wild-caught mice or rats will quickly show. Laboratory mice and rats are fatter, slower, less aggressive, and more amenable to handling than their wild-caught counterparts. As an organism that lives commensally with humans, there have been many opportunities through time for people to establish relationships, good or otherwise, with small beings living in their homes and fields. Mice originated in the Indian subcontinent and spread throughout the world with agriculture and human movement. The original habitat of the Norway rat is the steppes of northern China and Mongolia, and, like mice, rats have spread throughout the world with human migration. (Pritchett-Corning et al. 2015, 6)

      Here, mice and rats are understood as coexisting in partnership (or “commensally”) with humans for millennia, their incorporation as valued domesticates enabled by the specialized pursuits of “mouse fanciers” in locations as distant as Japan and China with deep histories that extend back “at least [to] 1100 bce, and perhaps earlier.” Through such narratives, humans and rodents are entwined in a natural progression marked by coevolutionary partnerships. To return to Zeder, the recent “directed” (or, perhaps better phrased here, “redirected”) “pathway” of the lab mouse’s domestication has occurred through a “deliberate and directed process … initiated by humans with the goal of domesticating a free-living animal to obtain a specific resource or set of resources of interest” (2012, 176).

      At work here is a retelling of the


Скачать книгу