Введение в финансовую математику. Георгий Димитриади
годовые переменные:
if = i / m, nf = mn.
Последнее соотношение легко интерпретируемо: при сроке n лет количество периодов размером «1/m года» равно mn.
Тогда с использованием годовой процентной ставки итоговую формулу расчета наращенной суммы с использованием сложных процентов с начислением m раз в год можно записать как:
S = P (1 + i / m)mn .
Поскольку, как было выяснено, формула сложных процентов с начислением m раз в год верна и для нецелого числа лет n, то и полученная формула верна для нецелого n. Более того, можно показать, что она остается верной и для нецелого m.
Отметим, что всегда предполагается, что сложные проценты начисляются один раз в год, если не указано противное.
Дня того, чтобы продемонстрировать зависимость наращенной суммы от количества начислений m раз в год, сведем в Таблицы 2 и 3 результаты расчетов при Р = 100 руб. и ставке i = 10% в Таблице 2 и ставке i = 25% в Таблице 3.
Дискретное и непрерывное начисление процентов
Зададимся вопросом: как изменится формула начисления процентов, если увеличивать количество m начислений процентов в год.
Например, сначала предполагать, что m = 12, затем 24, 365 (ежедневное начисление), 365*24 (ежечасное) и др. При m, стремящемся к бесконечности, получим непрерывные проценты (проценты с непрерывным начислением):
Сделаем замену z = m / i.
Вспомним, что замечательный предел внутри скобок равен e. Тогда:
S = Peni.
Обычно годовую ставку начисления непрерывных процентов обозначают δ. Итоговая формула непрерывных процентов выглядит как:
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.