Во все уши. Про многозадачный орган, благодаря которому мы слышим, сохраняем рассудок и держим равновесие. Томас Зюндер
подведем итог тому, что мы узнали о распространении звуковых волн при хлопке:
• состоят из молекул воздуха, которые толкают друг друга подобно костяшкам домино;
• распространяются сферически вокруг источника звука;
• стенка звуковой сферы состоит из прижатых друг к другу молекул воздуха, в то время как внутри нее преобладает первоначальная плотность воздуха;
• звуковые волны – это не что иное, как систематическое изменение давления воздуха, которое распространяется в пространстве.
Акустический концерт, акт второй: о волнах, которые на самом деле представляют собой луковицы
Большинство шумов сложнее, чем простой хлопок. В отличие от упомянутого в начале Большого взрыва, они на самом деле представляют собой взрыв, то есть резкое изменение плотности воздуха. Это довольно громкий, но очень короткий звук.
Как выглядит звуковая волна при более длительном звучании? Например, в случае свиста или работающего двигателя?
Для нашего микроскопа подойдет пример звенящего бокала для вина. Если ударить по бокалу ложкой, он завибрирует, сталкиваясь при этом с окружающими молекулами воздуха. Здесь движение снова распространяется сферически, но вместо одной сферы в течение всей продолжительности колебаний постоянно создаются новые. На неподвижном кадре формирование молекул воздуха вокруг бокала выглядит как луковица. При рассмотрении в замедленной съемке отдельные ее слои непрерывно перемещаются изнутри наружу, увеличиваясь при этом.
Акустический концерт, акт третий: о волнах, которые представляют собой сплошной хаос
То, что мы увидели под микроскопом, – не что иное, как игра воображения. В реальной жизни ситуация выглядит гораздо сложнее. Прежде всего, все происходит безумно быстро: звук распространяется в воздухе со скоростью около 343 метров в секунду – независимо от того, хлопаете вы в ладоши или стучите по бокалу, за доли секунды доминоподобное движение молекул уже достигает стен, потолка и пола помещения. Молекулы отскакивают от каждой преграды и выбрасываются в пространство под разными углами. Их траекторию способны изменить даже предметы мебели.
Кроме того, в повседневной жизни ни один звук практически никогда не получается услышать отдельно. Предположим, в ресторане, где кто-то намеревается сказать тост перед большой компанией, собравшейся отпраздновать свадьбу, ударили по бокалу. Вокруг слышны голоса, звон столовых приборов, шелест одежды, шаги официантов, тихая фоновая музыка, шум автомобилей на улице. Все эти источники шума образуют звуковые сферы и луковицы, перекрывающие друг друга. Молекулы, которые оттолкнулись от одного источника звука, в воздухе встречаются с другими движущимися молекулами и сбиваются с курса. Стены, люстры, столы и человеческие тела отклоняют движения. Если на стоп-кадре, сделанном в этом ресторане, мы начнем искать сферу или луковицу, то не найдем ее. Вместо этого, по всей вероятности,