Practical Data Analysis with JMP, Third Edition. Robert Carver

Practical Data Analysis with JMP, Third Edition - Robert Carver


Скачать книгу

       Chapter 4: Describing Two Variables at a Time

       Overview

       Two-by-Two: Bivariate Data

       Describing Covariation: Two Categorical Variables

       Describing Covariation: One Continuous, One Categorical Variable

       Describing Covariation: Two Continuous Variables

       Application

       Chapter 5: Review of Descriptive Statistics

       Overview

       The World Development Indicators

       Questions for Analysis

       Applying an Analytic Framework

       Preparation for Analysis

       Univariate Descriptions

       Explore Relationships with Graph Builder

       Further Analysis with the Multivariate Platform

       Further Analysis with Fit Y by X

       Summing Up: Interpretation and Conclusions

       Visualizing Multiple Relationships

       Chapter 6: Elementary Probability and Discrete Distributions

       Overview

       The Role of Probability in Data Analysis

       Elements of Probability Theory

       Contingency Tables and Probability

       Discrete Random Variables: From Events to Numbers

       Three Common Discrete Distributions

       Simulating Random Variation with JMP

       Discrete Distributions as Models of Real Processes

       Application

       Chapter 7: The Normal Model

       Overview

       Continuous Data and Probability

       Density Functions

       The Normal Model

       Normal Calculations

       Checking Data for the Suitability of a Normal Model

       Generating Pseudo-Random Normal Data

       Application

       Chapter 8: Sampling and Sampling Distributions

       Overview

       Why Sample?

       Methods of Sampling

       Using JMP to Select a Simple Random Sample

       Variability Across Samples: Sampling Distributions

       Application

       Chapter 9: Review of Probability and Probabilistic Sampling

       Overview

       Probability Distributions and Density Functions

       The Normal and t Distributions

       The Usefulness of Theoretical Models

       When Samples Surprise Us: Ordinary and Extraordinary Sampling Variability

       Conclusion

       Chapter 10: Inference for a Single Categorical Variable

       Overview

       Two Inferential Tasks

       Statistical Inference Is Always Conditional

       Using JMP to Conduct a Significance Test

       Confidence Intervals

       Using JMP to Estimate a Population Proportion

       A Few Words about Error

       Application

       Chapter 11: Inference for a Single Continuous Variable

       Overview

       Conditions for Inference

       Using JMP to Conduct a Significance Test

       What If Conditions Are Not Satisfied?

       Using JMP to Estimate a Population Mean

       Matched Pairs: One Variable, Two Measurements

       Application

       Chapter 12: Chi-Square Tests

       Overview

       Chi-Square Goodness-of-Fit Test

       Inference for Two Categorical Variables

       Contingency Tables Revisited

       Chi-Square Test of Independence

       Application

       Chapter 13: Two-Sample Inference for a Continuous Variable

       Overview

       Conditions for Inference

       Using JMP to Compare Two Means

       Using JMP to Compare Two Variances

       Application

       Chapter 14: Analysis of Variance

       Overview

       What Are We Assuming?

       One-Way ANOVA

       What If Conditions Are Not Satisfied?

       Including a Second Factor with Two-Way ANOVA

       Application

       Chapter


Скачать книгу