Расслабься. Гениальное исследование о том, как вовремя взятая пауза в разы увеличивает ваши результаты. Томас Фридман
более эффективным, чем могли бы себе представить.
– Старый подход, – сказал Рух, – назывался техническим обслуживанием по принципу: если что-то выглядит грязным, вымойте его. Профилактическое обслуживание заключалось в том, чтобы менять масло каждые шесть тысяч миль, независимо от того, жёстко вы водите автомобиль или нет. Новый подход – «упредительное обслуживание». Теперь мы можем предсказать почти точный момент, когда шина, двигатель, аккумулятор автомобиля, вентилятор турбины или что-то ещё потребует замены. Или определить моторное масло, которое лучше всего подходит для конкретного двигателя, в зависимости от условий, в которых вы управляете автомобилем.
Если вы вспомните GE прошлых лет, – добавил Рух, – то прежде компания базировалась на убеждении механиков, будто с помощью физики можно моделировать мир и сразу же понять, как всё работает. Идея заключалась в том, что если вы точно знаете, как работают газовая турбина и двигатель внутреннего сгорания, то можете использовать законы физики и сказать: «Вот как это будет работать, и вот когда оно сломается».
Рух объяснил, что в традиционном инженерном сообществе не было веры в то, будто данные могут многое предложить. Они использовали информацию, чтобы проверить физические модели и затем следовать этим моделям.
– Новое поколение исследователей данных говорит: «Вам не нужно понимать физику, чтобы искать и находить закономерности». Есть закономерности, которых разум человека не мог найти, ибо сигналы на раннем этапе настолько слабы, что их не видно. Но теперь, когда у нас есть вся эта вычислительная мощность, мы легко замечаем даже самые слабые сигналы. И так как мы распознали слабый сигнал, становится ясно, что он является ранним признаком того, когда что-то сломается или станет неэффективным.
И дальше Рух рассказал, что в своё время слабые сигналы обнаруживали интуитивно. Опытные сотрудники знали, как работать с неточными данными. Но теперь, когда мы обладаем большим объёмом проанализированной информации, нахождение связей и закономерностей перестаёт быть поиском иголки в стоге сена, случайным, интуитивным успехом и становится тем, что гордо можно называть нормой. Мы увеличиваем способность работающего человека воспринимать и обрабатывать данные с помощью машин. Каждый рабочий благодаря компьютерному анализу получает опыт и интуицию «ветерана с тридцатилетним стажем».
Подумайте об этом. Интуиция, позволявшая работнику с многолетним стажем улавливать нюансы тональности в звуке работающей машины и предсказывать, что не так, отныне эволюционировала в программный компьютерный анализ данных обо всём, происходящем в цеху. Это пример слабого сигнала. Теперь с помощью датчиков новый сотрудник способен обнаружить и распознать слабый сигнал в первый же день работы – без какой-либо интуиции. Датчики будут транслировать всё.
Способность намного быстрее генерировать и применять знания позволяет получать максимум пользы не только от людей,